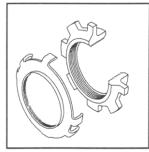
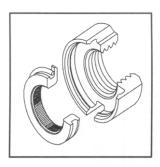


Proud distributor for Shur-Lok

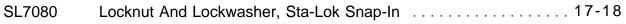


Shur-Lok Bearing Locknuts Catalog

TABLE OF CONTENTS


General Introduction	-	2)
----------------------	---	---	---

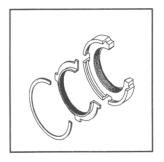
STA-LOK POSITIVE LOCKING SYSTEM



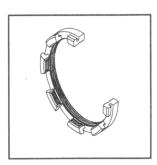
Bearing Retaining	g Features And	Benefits		3
-------------------	----------------	----------	--	---

SL60N	Locknut, Sta-lok, Bearing Retaining
SL60W	Lockwasher, Sta-Lok Bearing Retaining
SL61N	Locknut, Sta-Lok, Bearing Retaining
SL61W	Lockwasher, Sta-Lok Bearing Retaining
	Detente Removal Provision
SL61WT	Lockwasher, Sta-Lok Bearing Retaining
	Thread Removal Provision

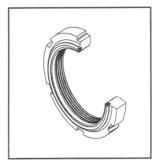
Snap-In Features	And Benefits	 16


Cotter Key Lock Features and Benefits 1	9
---	---

SL7458	Locknut, Sta-Lok, Precise Adjusting		20
--------	-------------------------------------	--	----


Keyway Lock Features And Benefits	Keyway	Lock Features	And Benefits		. 21
-----------------------------------	--------	---------------	--------------	--	------

SL7620	Locknut Keyway Lock	


Spiral Lock Features and Benefits	
-----------------------------------	--

PREVAILING TORQUE LOCKNUTS

Face Wrenching Features and Benefits	 25

SL7500	Locknut Face Wrenching	
SL7501	Locknut Face Wrenching	

Crimp Lock	Features and	d Benefits	 34
Crimp Lock	Features and	d Benefits	 34

SL7610	Locknut Crimp Lock External Slots	- 37
		•••

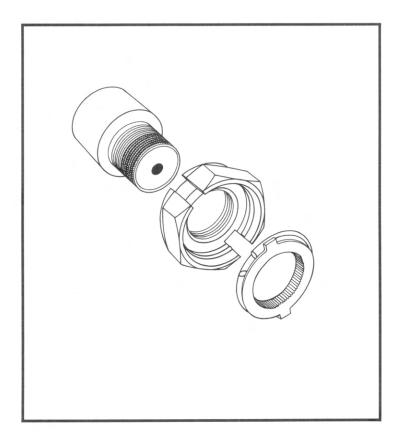
Segmented Lock Features and Benefits 38

International Specifications for Steels	Αι	opendix B
	· · · · · · · · · · · · · · · · · · ·	pondix D

TSB001 STA-LOK POSITIVE LOCKING SYSTEM Technical Sales Bulletin Contact Shur-Lok For a Copy

INTRODUCTION

Shur-Lok provides a variety of locknut types to meet almost any design challenge. Our Locknuts are used for many different applications including turbo-machinery, gearboxes, transmissions, aircraft structure, aircraft landing gear and high vibration helicopter applications.

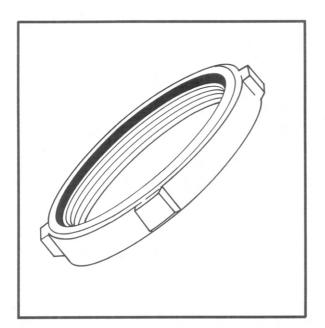

Whether your design requirements include high vibration, high RPM, superior strength, reduced weight, high temperature or corrosion protection, Shur-Lok can offer a design to meet your needs. Our Product Engineering Group can assist you with your special or custom designs, or you can select from our existing product series. Sizes ranging from .250 to 8.00 inches in diameter can be provided. Metric thread equivalents are also available.

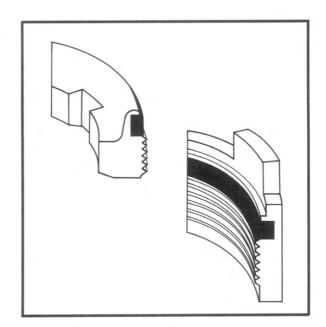
Locknuts can be produced from almost any commercially available materials. These include Alloys that offer weight, corrosion, strength and temperature benefits. Commonly used materials are Titanium, A286 CRES, Inconel, 300 series stainless steel and all alloy carbon steels.

The 2 basic locknut types offered by Shur-Lok are *positive lock* and *prevailing torque* locknuts.

Positive lock locknuts, compromise a family of parts that are designed to prevent any unthreading or backing off of the nut by utilizing a mechanical or positive stop. In order for a positively locked locknut to lose preload or locking function when installed, requires the shearing of metal. Installation and removal of this type of locknut, requires a secondary locking component, such as a lockwasher.

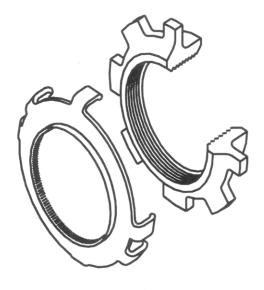
The Shur-Lok positive locking systems provide the most adaptable and balanced positive locking systems available. The foundation of this family of parts, is our **STA-LOK** system. The **STA-LOK** system uses extremely small serrations in its design to provide precise torque setting of the locknut this system has been the design standard, proven through out the years, in the rigorous operating conditions of helicopter gearboxes, engine assemblies and aircraft landing gear.




Prevailing torque locknuts are exactly what the term implies. Unlike a positive lock, prevailing torque locknuts provide a frictional force or prevailing torque between the nut and the shaft. This frictional force is created through interference between the nut locking feature and the shaft thread. The resulting prevailing torque, resists unlocking of the threaded joint. In the event that an "untightening" force acts on the seated nut that is higher than the nut's prevailing torque and seating torque, the nut will loosen only until the force is removed. When the force is removed, the locknut's frictional or prevailing torque will prevent the nut from further coming off the shaft or the bolt. This example describes prevailing torque function for an internally threaded locknut. An externally threaded locknut functions in an identical manner, with the exception that it is typically threaded into a housing or an internal shaft thread.

This brochure illustrates standard series of both positive and prevailing torque locknuts. We encourage the use of standard series when possible as this eliminates the lead time associated with custom designs. In the event that your application cannot be satisfied by a standard series, Shur-Lok welcomes the submittal of your specific design criteria. Shur-Lok has a comprehensive network of technical sales people that are available to work with you on your custom design.

Locknut Styles available within the Categories of Prevailing and Positive Lock Types:


Various styles and designs of locknuts are available within the categories of Prevailing Torque and Positive Lock. Those designs are listed below. See indicated pages for a detailed description of applications and benefits.

Locknut - Positive Lock

STA-LOK, BEARING, RETAINING

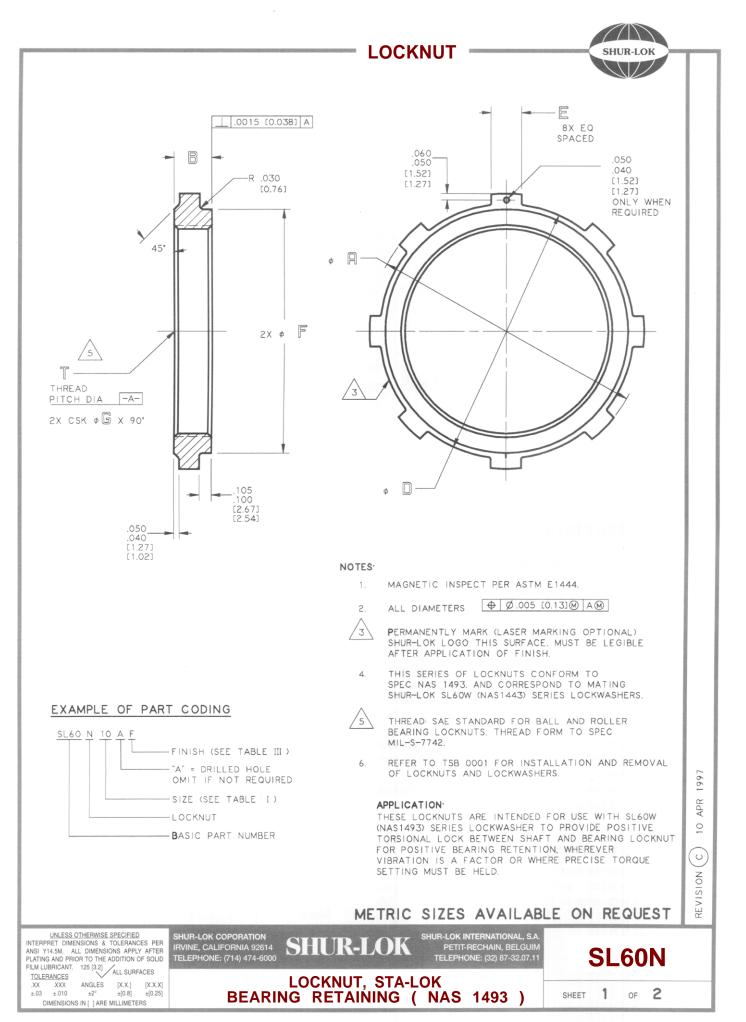
FEATURES AND BENEFITS

- Positive mechanical lock that is not dependent on lubricants or plating for repeatability
- Achieves precise preload serrations provide adjustment that eliminates back-off or overtorque.
- Maintains fatigue strength at reduced weight. External serrations in the nonload carryingportion of the thread eliminates keyways allowing reduction of shaft wall thickness or diameter.
- Key way stress concentrations are eliminated.
- Internal serrations of washer mates with serrated shaft
- SL60 series nut and washer supplied as separate components under NAS 1493 and NAS 1443 part numbers.
- SL61 series washer incorporates an additional removal feature.

SHAFT/BOLT SERRATIONS

Broaching serrations on shaft/bolt is required. For installation and removal of locknuts and lockwashers refer to Technical Sales Bulletin - TSB 0001.

APPLICATIONS


- Interference type where there is high RPM and/or load reversals.
- Where achieving precise preload is critical and existing nuts cannot provide adequate adjustment.
- Where vibration is present.
- Where weight reduction is a priority and shaft wall thickness or diameter can be reduced.
- Where a positive mechanical lock is required.

SERRATIONS - CLEARANCE OR INTERFERENCE FIT

Interference fit is provided by Shur-Lok.

THREAD SIZE

.391 through 4.325 inch.

LOCKNUT

TABLE I

SHUR-LOK SL60N	NAS1493 BASIC	T THREAD	¢ A	B	φ	K	¢	۰ G
DASH NO	PART NUMBER	STD 8.2 CLASS 3B	+.005 [+0.13] 015 [-0.38]	+.005 [+0.13] 000 [-0.00]	± .005 [0.13]	+.010 [+0.13] 000 [-0.00]	+.000 [+0.00] 005 [-0.13]	+.000 [+0.00] 005 [-0.13]
1	NAS1493-1	.391-32 NS	.719 [18.26]	.188 [4.78]	.599 [15.21]	.125 [3.18]	.512 [13.00]	.401 [10.19]
2	NAS1493-2	.469-32 NS	.812 [20.62]	.188 [4.78]	.693 [17.60]	.125 [3.18]	.606 [15.39]	.479 [12.17]
3	NAS1493-3	.586-32 NS	.938 [23.83]	.219 [5.56]	.817 [20.75]	.125 [3.18]	.730 [18.54]	.596 [15.14]
4	NAS1493-4	.664-32 NS	1.062 [26.97]	.219 [5.56]	.943 [23.95]	.125 [3.18]	.856 [21.74]	.674 [17.12]
5	NAS1493-5	.781-32 NS	1.188 [30.18]	.250 [6.35]	1.067 [27.10]	.188 [4.78]	.980 [24.89]	.791 [20.09]
6	NAS1493-6	.969-32 NS	1.375 [34.93]	.250 [6.35]	1.255 [31.88]	.188 [4.78]	1.168 [29.67]	.979 [24.87]
7	NAS1493-7	1.173-18 NS	1.688 [42.88]	.281 [7.14]	1.505 [38.23]	.188 [4.78]	1.418 [36.02]	1.183 [30.05
8	NAS1493-8	1.376-18 NS	1.906 [48.41]	.281 [7.14]	1.724 [43.79]	.188 [4.78]	1.637 [41.58]	1.386 [35.20]
9	NAS1493-9	1.563-18 NS	2.094 [53.19]	.281 [7.14]	1.911 [48.54]	.250 [6.35]	1.824 [46.33]	1.573 [39.95
10	NAS1493-10	1.767-18 NS	2.312 [58.72]	.312 [7.92]	2.130 [54.10]	.250 [6.35]	2.043 [51.89]	1.777 [45.14
11	NAS1493-11	1.967-18 NS	2.500 [63.50]	.312 [7.92]	2.317 [58.85]	.250 [6.35]	2.230 [56.64]	1.977 [50.22]
12	NAS1493-12	2.157-18 NS	2.750 [69.85]	.312 [7.92]	2.567 [65.20]	.250 [6.35]	2.480 [62.99]	2.167 [55.04
13	NAS1493-13	2.360-18 NS	2.938 [74.63]	.344 [8.74]	2.755 [69.98]	.250 [6.35]	2.668 [67.77]	2.370 [60.20
14	NAS1493-14	2.548-18 NS	3.125 [79.38]	.344 [8.74]	2.943 [74.75]	.250 [6.35]	2.856 [72.54]	2.558 [64.97
15	NAS14593-15	2.751-18 NS	3.344 [84.94]	.344 [8.74]	3.161 [80.29]	.250 [6.35]	3.074 [78.08]	2.761 [70.13
16	NAS1493-16	2.933-12 NS	3.688 [93.68]	.375 [9.53]	3.443 [87.45]	.375 [9.52]	3.356 [85.24]	2.943 [74.75]
17	NAS1493-17	3.137-12 NS	3.906 [99.21]	.375 [9.53]	3.661 [92.99]	.375 [9.52]	3.574 [90.78]	3.147 [79.93]
18	NAS1493-18	3.340-12 NS	4.125 [104.78]	.375 [9.53]	3.880 [98.55]	.375 [9.52]	3.793 [96.34]	3.350 [85.09]
19	NAS1493-19	3.527-12 NS	4.312 [109.52]	.375 [9.53]	4.067 [103.30]	.375 [9.52]	3.980 [101.09]	3.537 [89.84
20	NAS1493-20	3.730-12 NS	4.531 [115.09]	.406 [10.31]	4.286 [108.86]	.375 [9.52]	4.199 [106.65]	3.740 [95.00
21	NAS1493-21	3.918-12 NS	4.719 [119.86]	.406 [10.31]	4.474 [113.64]	.375 [9.52]	4.387 [111.43]	3.928 [99.77
22	NAS1493-22	4.122-12 NS	4.906 [124.61]	.406 [10.31]	4.661 [118.39]	.500 [12.70]	4.574 [116.18]	4.132 [104.9
23	NAS1493-23	4.325-12 NS	5.125 [130.18]	.406 [10.31]	4.880 [123.95]	.500 [12.70]	4.793 [121.74]	4.335 [110.1

TABLE II

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES

 EMARCES
 XXX
 ANGLES
 [X.X.]
 [X.X.X]

 3 ±.010 ±2° ±[0.8] ±[0.25]
 DIMENSIONS IN [] ARE MILLIMETERS

 TOLERANCES

 .XX
 .XXX

 ±.03
 ±.010

MATERIAL	HEAT TREAT
4130 ALLOY STEEL PER MIL-S-6758 CONDITION F DASH SIZE 1 - 6	NONE
4130 ALLOY STEEL PER MIL-S-6758 CONDITION D. OR AMS 6361 OR MIL-T-6756 TYPE I SEAMLESS DASH SIZE 7 - 23	26-33 HRC PER MIL-H-6875

FINISH CODE	FINISH
F	BLACK OXIDE, DULITE OR EQUIVALENT PER MIL-C-13924, CLASS 1, GRADE C.
NONE	CADMIUM PLATE PER QQ-P-416. TYPE II CLASS 2.

METRIC SIZES AVAILABLE ON REQUEST

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL60N

OF 2

SHEET 2

SHUR-LOK

5

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

LOCKWASHER

TABLE I

SHUR-LOK SL60W DASH	NAS1443 BASIC PART	REQUIRED MAJOR DIA FOR SHAFT	ФÂ	B	φ 🗋		¢F	G	J	L	MAX SHAF T RPM	APPROX WEIGHT LB/100
	NUMBER	+.0000 0050		+.010 000	+.005 000				NO.	+.010 000		PIECES
<u>_1</u>		[+0.000] [-0.127]		{+0.25] [-0.00]	(+0.13] [-0.00]			STOCK	OF SERR.	[+0.25] [-0.00]		LB [Kg]
SL60W1	NAS1443-1	.3910 [9.931]	.531 [13.49]	.128 [3.25]	.604 [15.34]	.095 [2.41]	.464 [11.79]	024 [0.61]	30	.150 [3.81]	113,000	.45 [.20]
SL60W2	NAS1443-2	.4690 [11.913]	.625 [15.88]	.128 [3.25]	.698 [17.73]	.115 [2.92]	.551 [14.00]	.024 [0.61]	36	.150 [3.81]	101,400	.52 [.24]
SL60W3	NAS1443-3	.5860 [14.884]	.750 [19.05]	.159 [4.04]	.822 [20.88]	.115 [2.92]	.677 [17.20]	.050 [1.27]	46	.150 [3.81]	78,650	.66 [.30]
SL60W4	NAS1443-4	.6640 [16.866]	.875 [22.23]	.159	.948 [24.08]	.115	.734	.050 [1.27]	52	.150 [3.81]	72,650	.71
SL60W5	NAS1443-5	.7810	1.000	.190	1.072	.178	.855	.050	61	.213	56,750	1.04
SL60W6	NAS1443-6	.9690	1.188	.190	1.260	.178	1.042	.050	76	.213	52,150	1.26
SL60W7	NAS1443-7	[24.613] 1.1730	[30.18]	[4.83] .221	[32.00]	[4.52] .178	[26.47] 1.255	.050	93	[5.41] .213	40,150	[.57] 1.61
SL60W8	NAS1443-8	[29.794] 1.3760	[52.52] 1.656	[5.61] .221	[38.35] 1.729	[4.52] .178	[31.88] 1.455	[1.27] .050	109	[5.41] .213	37,850	[.73] 1.88
SL60W9	NAS1443-9	[34.950] 1.5630	[69.66] 1.844	[5.61] .221	[43.92] 1.916	[4.52] .240	[36.96] 1.642	[1.27] .050	124	[5.41] .275	36,050	[.85] 2.10
SL60W10		[39.700] 1.7670	[46.84] 2.062	[5.61] .252	[48.67] 2.135	[6.10] .240	[41.71] 1.842	[1.27] .050	140	[6.99] .275	29,250	[.95] 2.64
	NAS1443-10	[44.882] 1.9670	[52.37] 2.250	[6.40] .252	[54.18] 2.322	[6.10] .240	[46.79] 2.042	[1.27] .050		[6.99] .275		[1.20] 2.65
SL60W11	NAS1443-11	[49.962] 2.1570	[57.15] 2.500	[6.40] .252	[58.98] 2.572	[6.10] .240	[51.87] 2.230	[1.27] .050	156	[6.99] .275	28,550	[1.20] 3.33
SL60W12	NAS1443-12	[54.788] 2.3600	[63.50]	.284	[65.33] 2.760	.240	[56.64]	[1.27] .050	171	[6.99] .275	26,900	[1.51] 3.38
SL60W13	NAS1443-13	[59.944]	[68.28]	[7.21]	[70.10]	[6.10]	[62.03]	[1.27]	188	[6.99]	23,200	[1.53]
SL60W14	NAS1443-14	2.5480 [64.719]	2.875 [73.03]	.284 [7.21]	2.948 [74.88]	.240 [6.10]	2.630 [66.80]	.050 [1.27]	203	.275 [6.99]	22,450	3.45 [1.56]
SL60W15	NAS1443-15	2.7510 [69.875]	3.094 [78.59]	.284 [7.21]	3.166 [80.42]	.240 [6.10]	2.830 [71.88]	.050 [1.27]	219	.275 [6.99]	21,650	4.10 [1.86]
SL60W16	NAS1443-16	2.9330 [74.498]	3.375 [85.73]	.305 [7.75]	3.448 [87.58]	.365 [9.27]	3.005 [76.33]	.050 [1.27]	233	.400 [10.16]	18,800	5.34 [2.42]
SL60W17	NAS1443-17	3.1370 [79.680]	3.594 [91.29]	.317 [8.05]	3.666 [93.12]	.365 [9,27]	3.217 [81,71]	.050 [1,27]	250	.400 [10.16]	18,100	5.75 [2.61]
SL60W18	NAS1443-18	3.3400	3.813	.315	3.885	.365	3.417	.050	266	.400	17,640	6.27
SL60W19	NAS1443-19	3.5270	4.000	.315	4.072	.365	3.605	.050	281	.400	17,300	6.33
SL60W20	NAS1443-20	3.7300	4.219	.339	4.291	.365	3.805	.050	297	.400	15,250	7.17
SL60W21	NAS1443-21	[94.742] 3.9180	[107.16] 4.406	[8.61] .337	4.482	.365	[96.65] 3.999	.050	312	.400	14,880	7.23
SL60W22	NAS1443-22	[99.517] 4.1220	[119.91] 4.594	[8.56] .356	[11 <u>3</u> .84] 4.666	[9.27] .490	[101.57] 4.192	[1.27] .050	328	[10.16] .525	14,560	[3.28] 7.89
SL60W23	NAS1443-23	[104.699] 4.3250	[116.69] 4.812	[9.04] .347	[118.52] 4.885	[12.45] .490	[106.48] 4.405	[1.27] .050	345	[13.34] .525	14,230	[3.58] 8.25
SLOUWES	NA31445-23	[109.855]	[122.22]	[8.81]	[124.08]	[12.45]	[111.89]	[1.27]	0-0	[13.34]	1 4, 2 0 9	[3.74]

TABLE II

FINISH
BLACK OXIDE PER MIL-C-13924, CLASS 1, GRADE C PLUS MIL-C-16173 GRADE 3 COMPOUND
CADMIUM PLATE PER QQ-P-416, TYPE II, CLASS 2
SILVER PLATE PER AMS 2412, .00010005 [0.003-0.013] THICKNESS

METRIC SIZES AVAILABLE ON REQUEST

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M. ALL DIMENSIONS APUY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES TOLERANCES XX XXXX ANGLES [X.X.] [X.X.X] ±.03 ±.010 ±2° ±[0.8] ±[0.3] DIMENSIONS IN [] ARE MILLIMETERS

LOCKWASHER STA-LOK BEARING LOCKNUT. RETAINING (NAS 1443)

SHUR-LOK

SL60W

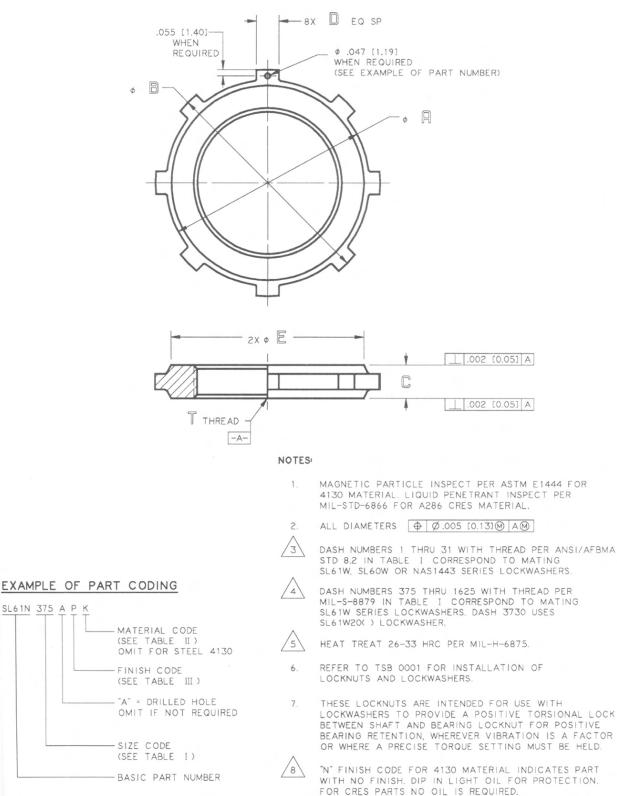
03 APR 1997

Z

REVISION

SHEET 2 OF 2

LOCKNUT —STA-LOK


1997

MAR

90

NO

S REVI

0 METRIC SIZES AVAILABLE ON REQUEST SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11 SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000 UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER **SHUR-LOK** SL61N PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3,2] ALL SURFACES TOLERANCES LOCKNUT,STA-LOK ANGLES [X.X.] [X.X.X] ±2° ±[0.8] ±[0.25] .XX .XXX ±.03 ±.010 3 **BEARING RETAINING** SHEET OF

XX.

DIMENSIONS IN [] ARE MILLIMETERS

LOCKNUT -STA-LOK

	T THREAD		T THREAD Ø		¢	B	BC				φ	
SIZE CODE	ANSI/AFBMA STD 8.2 CLASS 3	PER MIL-S-8879 CLASS-3B 4		+[0.25]								
250		.2500-28UNJF							.095	[2.41]		
1	.391-32 NS								.125	[3.18]		
312-18		.3125-18UNJC										
312-24		.3125-24UNJF	.594	[15.09]	.719	[18.26]	.188	[4.78]			.512	[13.00]
375		.3750-32UNJEF							.095	[2.41]		
375-24		.3750-24UNJF		-								
2	.469-32 NS											
437		.4375-28UNJEF	.688	[17.48]	.812	[20.62]	.188	[4.78]	.125	[3.18]	.606	[15.39]
3	.586-32 NS											
500		.5000-28UNJEF	.812	[17.48]	.938	[23.83]	.219	[5.56]	.125	[3.18]	.730	[18.54]
562		.5625-24UNJEF										
4	.664-32 NS											
625		.6250-24UNJEF	.938	[23.83]	1.062	[26.97]	.219	[5.56]	.125	[3.18]	.856	[21.74]
5	.781-32 NS											
750		.7500-20UNJEF	1.062	[26.97]	1.188	[30.18]	.250	[6.35]	.188	[4.78]	.980	[24.89]
6	.969-32 NS											
875		.8750-20UNJEF	1.250	[31.75]	1.375	[34.93]	.250	[6.35]	.188	[4.78]	1.168	[29.67]
7	1.173-18 NS											
1000		1.0000-16UNJ	1.500	[38.10]	1.688	[42.88]	.281	[7.14]	.188	[4.78]	1.418	[36.02]
1125		1.1250-16UNJ										
8	1.376-18 NS											
1250		1.2500-16UNJ	1.719	[43.43]	1.906	[48.41]	.281	[7.14]	.188	[4.78]	1.637	[41.58]
1375		1.3750-16UNJ										
9	1.563-18 NS											
1500		1.5000-16UNJ	1.906	[48.41]	2.094	[53.19]	.281	[7.14]	.250	[6.35]	1.824	[46.33]
10	1.767-18 NS											
1625		1.6250-16UNJ	2.125	[53.98]	2.312	[58.72]	.312	[7.92]	.250	[6.35]	2.043	[51.89]
11	1.967-18 NS		2.312	[58.93]	2.500	[63.50]	.312	[7.92]	.250	[6.35]	2.230	[56.64]
12	2.157-18 NS		2.562	[65.07]	2.750	[69.85]	.312	[7.92]	.250	[6.35]	2.480	[62.99]
13	2.360-18 NS		2.750	[69.85]		[74.63]		[8.74]	.250	[6.35]		[67.78]
14	2.548-18 NS		2.938	[74.63]	3.125	[79.38]	.344	[8.74]	.250	[6.35]	2.856	[72.54]
15	2.751-18 NS		3.156	[80.16]	3.344	[84.94]	.344	[8.74]	.250	[6.35]		[78.08]
16	2.933-12 NS		3.438	[87.33]	3.688	[93.68]	.375	[9.53]	.375		3.356	[85.24]
17	3.137-12 NS		3.656	[92.87]	3.906	[99.21]	.375	[9.53]		[9.53]		[90.78]
18	3.340-12 NS		3.875	[98.43]	4.125	[104.78]	.375	[9.53]	.375	[9.53]		[96.34]
19	3.527-12 NS		4.062	[103.17]	4.312	[109.52]	.375	[9.53]	.375	[9.53]		[96.52]
20	3.730-12 NS											
3730		3.7300-12UNJS	4.281	[108.74]	4.531	[115.09]	.406	[10.31]	.375	[9.53]	4.199	[106.64]
21	3.918-12 NS		4.469	[113.51]	4.719	[119.86]	.406	[10.31]	.375	[9.53]	4.387	[111.43]
22	4.122-12 NS		4.656	[118.26]	4.906	[124.61]	.406	[10.31]	.500	[12.70]		[116.18
23	4.325-12 NS		4.875	[123.83]	5.125	[130.18]	.406	[10.31]	.500	[12.70]		[121.74
25	4.716-12 NS		5.567	[141.40]	5.812	[147.62]	.432	[10.97]	.500	[12.70]		[137.41]
31	5.888-12 NS		6.950	[176.53]	7.250	[184.15]	.670	[17.02]		[15.88]		[172.54]

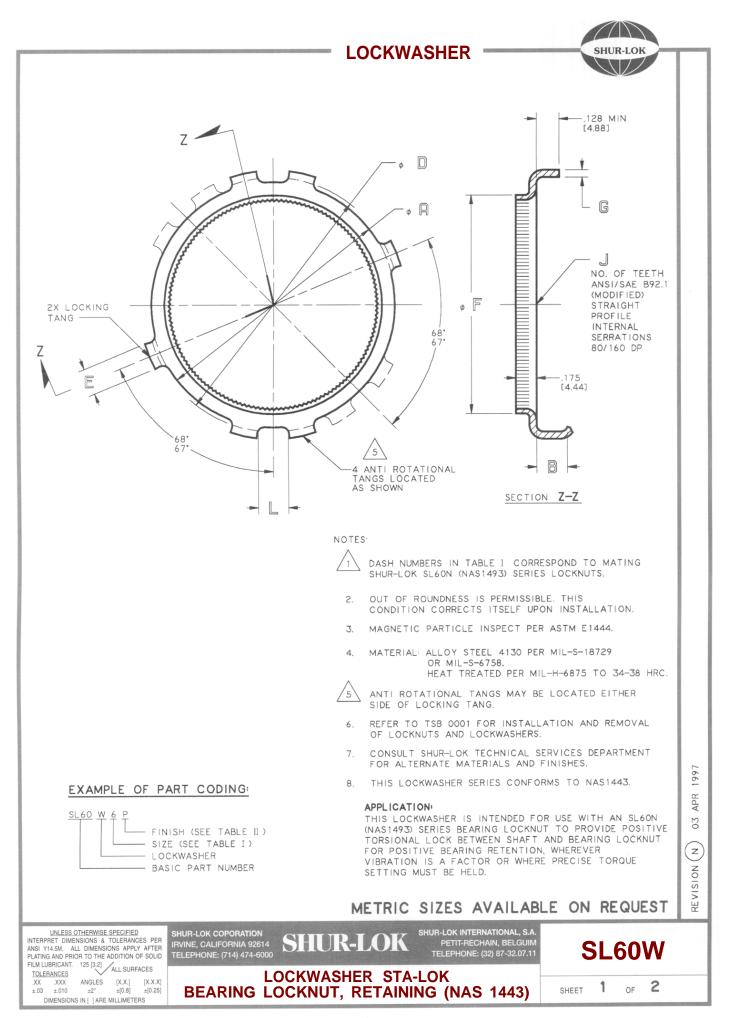
METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI 1/1.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3,2] TOLERANCES
 Image: Construction
 Constructing
 Construction
 Constr

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11 SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000 LOCKNUT, STA-LOK **BEARING RETAINING**

SHUR-LOK

OF 3


SHEET 2

1997

MAR 90

REVISION (G)

SHUR-LOK

LOCKNUT -STA-LOK -

06 NAR 1997

٣

TABLE II

MATL CODE	MATERIAL
NONE	4130 ALLOY STEEL PER MIL-S-6758, AMS 6361 OR MIL-T-6736
к	A286 CRES PER AMS 5737 OR MIL-T-6736

TABLE III

FINISH CODE	FINISH
F	BLACK OXIDE PER MIL-C-13924 CLASS 1, PLUS MIL-C-16173, GRADE 3
P	CADMIUM PLATE PER QQ-P-416, TYPE II , CLASS 2
S	SILVER PLATE PER AMS 2410
D	DRY FILM LUBE PER MIL-L-46010 TYPE 1
N	NO FINISH

TABLE I V

DASH	MIL-S-8879 SPECIAL	MAJOR	PITCH	MINOR
NO.	THREAD FROM TABLE I	DIA		DIA
3730	3.7300-12 UNJS-3B	3.7484 3.7300	3.6822 3.6759	3.6588 3.6488

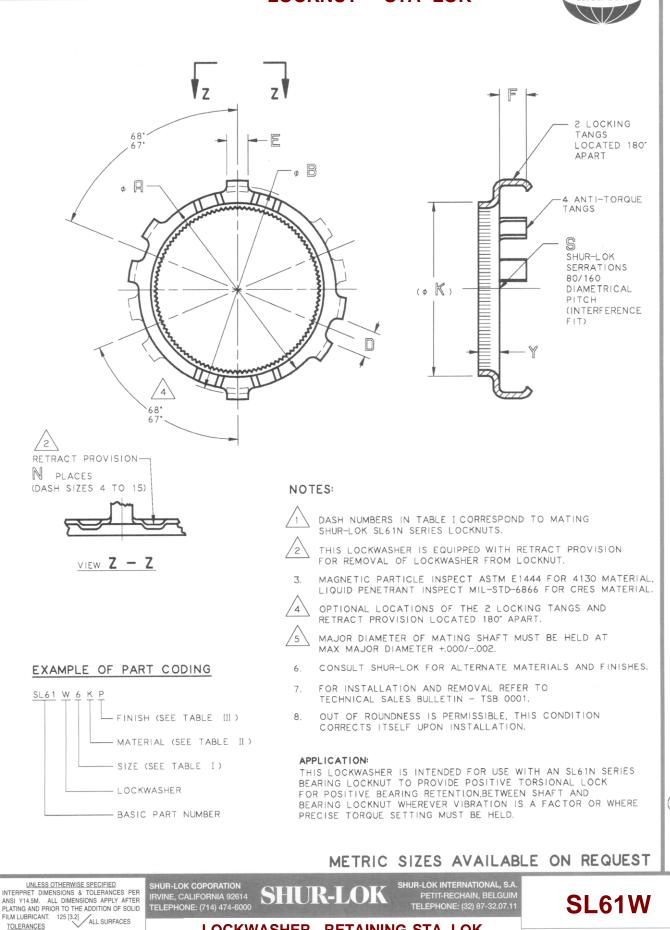
10

LOCKNUT —STA-LOK

SHUR-LOK

1997

APR


17

z

NO REVISIO

SHEET 1

OF 3

11

LOCKWASHER, RETAINING STA-LOK

BEARING LOCKNUT, SAE SERIES

TOLERANCES

±.03 ±.010

XX. .XXX. ANGLES [X.X.]

±[0.8]

±2°

DIMENSIONS IN [] ARE MILLIMETERS

[X.X.X]

±[0.25]

	APPROX WEIGHT LB/100 PIECES	.45	.53	99.	.70	1.03	1.25	1.61	1.87	2.09	2.64	2.36	3.33	3.37	3.45	4.10	5.33	5.75	17.9	41 5	7.23	7.89	8.25	TBD	TBD			
	OPERATING RPM MAX	113,000	101.400	78,650	72,650	56,750	52,150	40,150	37,850	36,050	29.250	28,550	26,900	23,200	22,450	21,650	18,800	18,100	11,640	15,250	14.880	14,560	14,230	TBD	TBD			
	Z	T		N/A					-	t				9							N/A							
	S OF SERR	30	36	46	52	61	76	93	109	124	140	156	171	188	203	219	233	250	266	103	312	328	345	376	470			
	>	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[4.45]	[9.53]	[9.53]			
		.175			.175	.175	.175	.175	.175	.175	.175	- 1			.175					2/1.	175	175	.175	.375	.375			
		[11.79]	[13.99]	[17.20]	[18.64]	[21.72]	[26.47]	[31.88]	[36.96]	[41.71]	[46.79]	[51.87]	[56.64]	[62.03]	[66.80]	[71.88]	[76.33]	[81.71]	[86.79]	[37 70J	104 10	[106.48]	[111.89]	[121.72]	[151.56]			
	Φ 🕅 REF	464 [1	.551 [1		.734 [855 [2	042	1.255 E	1.455 [3	1.642 [4	1.842 [4				2.630 [6					2.0005 7.005	-			4.792 [1]	5.967 [1			
		[3.38]	38]	17]	17]	[4.95]	[4.95] 1.	[5.74] 1.	[5.74] 1.	[5.74] 1.	53]	53]	53]		[7.34] 2.				2		-	-		[8.69] 4.	[14.73] 5.			
		.133 [3	.133 [3.	1	.164 [4.	.195 [4	.195 [4	.226 [5	.226 [5	.226 [5	.257 [6.			.289 [7	289 [7					74.4 10				.342 [8	580 [14			
		[2.42]	-	-	[2.92]	[4.52]	[4.52]	[4.52]	[4.52]	[6.10]	[6.10] .		-	-+	[6.10]	5		27]	2 2	[/]	-	-		[12.45]	[15.62]			
		.095 [2		.115 [.178 [.178 [.178 [.178 [.240 [.240 [.240		.240	.240					372			.490 [1	.490 [1	.615 [1			
	_	T,	[3.94]		[3.94]	[5.54]	[5.54]	[5.54]	[5.54]	[7.11]	[11]	[11.7]	[[1.1]]	[11.7]	[11.1]	[11.7]	[10.29]	[10.29]	[10.29]	[10.20]	[10.20]	[13.46]	[13.46]	[13.46]	[16.64]			
			.155	.155	.155	.218	.218	.218	.218	.280	.280	.280	.280	.280	.280					1 CU4.				.530 [.655 [
	[0.13]	[15.47]	[17.86]	[21.01]	[24.21]	[27.36]	[32.13]	[38.48]	[44.04]	[48.79]	[54.36]	[59.11]	[65.46]	[70.23]	[75.01]	[80.54]	[87.71]	[93.24]	[98.81]	100.0011	[11397]	[118.64]	[124.21]	[242.06]	[176.91]			
	φ ±.005	609	.703	.827	.953	1.077	1.265	1.515	1.734	1.921	2.140	2.327	2.577	2.765	2.953	3.171	3.453	3.671	0 1	1 10.4			0	5.582	6.965			
	Œ	[13.49]	[15.88]	[19.05]	[22.23]	[25.40]	[30.18]	[36.53]	[42.06]	[46.84]	[52.37]	[57.15]	[63.50]	[68.28]	[73.03]	[78.59]	[85.73]	[91.29]	[96.85]	L21 L011	LI011	[116.69]	[122.22]	[137.85]	[172.97]			
	Ø	531			.875	000	1.188	.438	1.656	1.844	2.062	2.250		2.688	2.875	3.094	3.375	3.594	813	4.000 1			812	5.427 [6.810 [
	P	[6.93]	[11.86]	4.88]	6.87]	9.81]	59]	[29.79]	[34.95]	[39.70]	[44.88]	-	74]	94]	[64.72]	88]	-	-	82]	140		571	86]	[119.79]	9.56]			
	SHAFT THD MAX REF				664 [16	.780 [19.	.968 [24.							60 [59.	~	_				.770 104		4117 [104		4.716 [11	888 [149			
LEI		39	4	S	9.	7.	6.	1.173	1.376	1.563	1.767	1.967	-	2.360	¢,	N	2.9	-	MI	1 0	+	+	+	+	5			
TABL	SIZE DASH NO	-		M	4	5	9	-	80	6	10	=	12	13	14	15	16	17	18		2 6	22	23	25	31			
												М	ЕΤ	RI	С	S	IZ	ES	A	V	411	.A	BL	E	ON	RE	QUE	ST

LOCKWASHER STA-LOK -

SHUR-LOK

12

LOCKNUT -

SHUR-LOK

TABL	E I CONTIN	UED					
SIZE DASH	ø A	ø B	D		F	ø K	r M
NO.		± .005 [0.13]	± .005 [0.13]		± .005 [0.13]	REF	± .005 [0.13]
372	.531 [13.49]	.609 [15.47]	.112 .[2.84]	.095 [2.42]	.133 [3.38]	.436 [11.76]	.037 [0.95]
375	.531 [13.49]	.609 [15.47]	.112 [2.84]	.095 [2.42]	.133 [3.38]	.436 [11.76]	.037 [0.95]
437	.625 [15.88]	.703 [17.86]	.155 [3.94]	.115 [2.92]	.133 [3.38]	.553 [13.34]	.041 [1.03]
500	.750 [19.05]	.827 [21.01]	.155 [3.94]	.115 [2.92]	.164 [4.17]	.588 [14.94]	.045 [1.15]
562	.750 [19.05]	.827 [21.01]	.155 [3.94]	.115 [2.92]	.164 [4.17]	.650 [16.51]	.045 [1.15]
625	.875 [22.23]	.948 [24.08]	.155 [3.94]	.115 [2.92]	.164 [4.17]	.693 [17.61]	.049 [1.25]
750	1.000 [25.40]	1.077 [27.36]	.218 [5.54]	.178 [4.52]	.195 [4.95]	.830 [21.03]	.049 [1.25]
875	1.188 [30.18]	1.265 32.13]	.218 [5.54]	.178 [4.52]	.195 [4.95]	.955 [24.26]	.039 [0.99]
1000	1.438 [36.53]	1.515 [38.48]	.218 [5.54]	.178 [4.52]	.226 [5.74]	1.080 [27.43]	.044 [1.13]
1125	1.438 [36.53]	1.515 [38.48]	.218 [5.54]	.178 [4.52]	.226 [5.74]	1.205 [30.61]	.044 [1.13]
1250	1.656 [42.06]	1.734 [44.04]	.218 [5.54]	.178 [4.52]	.226 [5.74]	1.330 [33.78]	.044 [1.13]
1375	1.656 [42.06]	1.734 [44.04]	.218 [5.54]	.178 [4.52]	.226 [5.74]	1.455 [36.96]	.044 [1.13]
1500	1.844 [46.84]	1.921 [48.79]	.280 [7.11]	.240 [6.10]	.226 [5.74]	1.580 [40.13]	.044 [1.13]
1562	1.844 [46.84]	1.921 [48.79]	.280 [7.11]	.240 [6.10]	.226 [5.74]	1.642 [41.71]	.049 [1.25]
1625	2.062 [52.37]	2.140 [54.36]	.280 [7.11]	.240 [6.10]	.257 [6.53]	1.705 [43.31]	.049 [1.25]

TABLE II

MATL CODE	MATERIAL & HEAT TREAT
NONE	4130 ALLOY STEEL PER MIL-S-18729. COND A. OR MIL-S-6758. HEAT TREAT 34-38 HRC PER MIL-H-6875
с	Z8CND17-04 PER AIR 9160 (1100-1250 MPg) OR 17-7 PH PER MIL-S-25043 OR AMS 5528 COND. H1050
к	A286 CRES PER AMS 5737 OR AMS 5525 140 KSI UTS MIN

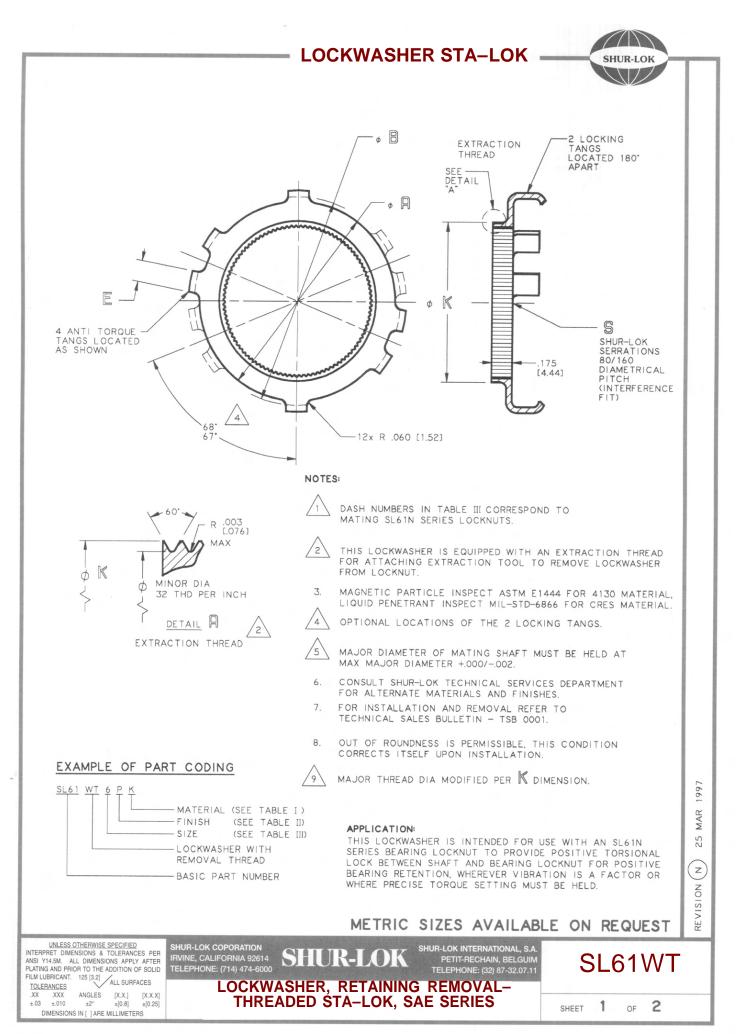
TABLE III

CODE	FINISH
NONE	BLACK OXIDE PER MIL-C-13924, CLASS 1 PLUS MIL-C-16173 GRADE 3 COMPOUND
Ρ	CADMIUM PLATE PER QQ-P-416. TYPE IL CLASS 2.
S	SILVER PLATE PER AMS 2412, .00010005 [0.003-0.013] THICKNESS
Y	PASSIVATE PER QQ-P-35

N 17 APR 1997

REVISION

SL61W


SHEET 3 OF 3

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI '14.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES <u>TOLERANCES</u> XX XXX ANGLES [X.X.] [X.X.X] ±.03 ±.010 ±2° ±[0.8] ±[0.25] DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000 SHUR-LOK SHUR-LOK SHUR-LOK SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11 LOCKWASHER, RETAINING STA–LOK BEARING LOCKNUT, SAE SERIES

LOCKWASHER STA-LOK

TA	ABLE I	
1.1	IATL ODE	MATERIAL AND HEAT TREAT
,	NONE	4130 STEEL BAR PER MIL-S-6758 - FOR SIZE DASH 3 AND UNDER. 4130 STEEL SHEET PER MIL-S-18729 COND.A - FOR SIZE DASH 4 AND OVER. HEAT TREAT ALL HRC 34-38 PER MIL-H-6875
	к	A286 CRES PER AMS 5737 OR AMS 5525 140 KSI UTS MIN

CODE	FINISH
F	BLACK OXIDE PER MIL-C-13924, CLASS I, PLUS MIL-C-16173, GRADE 3 OIL.
Ρ	CAD PLATE PER QQ-P-416, TYPE II, CLASS 2 BAKE AT 375'F ± 25'F FOR THREE HOURS MIN WITHIN FOUR HOURS AFTER PLATING.
S	SILVER PLATE PER AMS 2412. PLATING THICKNESS TO BE 0.003-0.013 ON THREADS.
Y	PASSIVATE PER QQ-P-35

TABLE III

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI '114.M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES TOLERANCES

A .XXX ANGLES [X.X.] [A D3 ±.010 ±2° ±[0.8] ± DIMENSIONS IN [] ARE MILLIMETERS

ANGLES [X.X.] [X.X.X] ±2° ±[0.8] ±[0.25]

TOLERANCES

.XX .XXX ±.03 ±.010

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SIZE DASH NO.		T THD Ref	¢	A	φ	B			φ	K	EXTRACTION THREAD SIZE UNJS-3A MOD	NUMBER OF SERR
1	1	5			±.005	5 [0.13]					9	S
0	.250	[6.35]	.531	[13.49]	.609	[15.47]	.100	[2.54]	.463	[11.76]	.4701-32	19
2	.4675	[11.86]	.625	[15.88]	.703	[17.86]	.115	[2.92]	.550	[13.97]	.5581-32	36
3	.586	[14.88]	.750	[19.05]	.827	[21.01]	.115	[2.92]	.677	[17.20]	.6831-32	46
4	.664	[16.87]	.875	[22.23]	.953	[24.21]	.115	[2.92]	.734	[18.64]	.7381-32	52
5	.7800	[19.81]	1.000	[25.40]	1.077	[27.36]	.178	[4.52]	.855	[21.72]	.8701-32	61
6	.9675	[24.57]	1.188	[30.18]	1.265	[32.13]	.178	[4.52]	1.042	[26.47]	1.0581-32	76
8	1.376	[29.79]	1.656	[42.06]	1.734	[44.04]	.178	[4.52]	1.455	[36.96]	1.4711-32	109
9	1.563	[34.95]	1.844	[46.84]	1.921	[48.79]	.240	[6.10]	1.642	[41.71]	1.6581-32	124
10	1.767	[39.70]	2.062	[52.37]	2.140	[54.36]	.240	[6.10]	1.842	[46.79]	1.8581-32	140
11	1.967	[44.88]	2.250	[57.15]	2.327	[59.11]	.240	[6.10]	2.042	[51.87]	2.0581-32	156
12	2.1550	[49.96]	2.500	[63.50]	2.577	[65.46]	.240	[6.10]	2.230	[56.64]	2.2461-32	171
14	2.5480	[54.74]	2.875	[73.03]	2.953	[75.01]	.240	[6.10]	2.630	[66.80]	2.6461-32	203
312	.3125	[7.94]	.531	[13.49]	.609	[15.47]	.100	[2.54]	.463	[11.76]	.4701-32	24
375	.3750	[9.53]	.531	[13.49]	.609	[15.47]	.100	[2.54]	.463	[11.76]	.4701-32	29
437	.4375	[11.11]	.625	[15.88]	.703	[17.86]	.115	[2.92]	.525	[13.34]	.5331-32	34
500	.5000	[74.42]	.750	[87.71]	.827	[21.01]	.115	[2.92]	.588	[14.94]	.5961-32	39
562	.5625	[14.29]	.750	[19.05]	.827	[21.01]	.115	[2.92]	.650	[16.51]	.6581-32	44
625	.6250	[15.88]	.875	[22.23]	.948	[24.08]	.115	[2.92]	.693	[17.60]	.7011-32	49
750	.7500	[19.05]	1.000	[25.40]	1.077	[27.36]	.178	[4.52]	.830	[21.08]	.8461-32	59
875	.8750	[22.23]	1.188	[30.18]	1.265	[32.13]	.178	[4.52]	.955	[24.26]	.9711-32	69
1000	1.0000	[25.40]	1.438	[36.53]	1.515	[38.48]	.178	[4.52]	1.080	[27.43]	1.0961-32	79
1125	1.1250	[28.58]	1.438	[36.53]	1.515	[38.48]	.178	[4.52]	1.205	[30.61]	1.2211-32	89
1250	1.2500	[31.75]	1.656	[42.06]	1.734	[44.04]	.178	[4.52]	1.330	[33.78]	1.3461-32	99
1375	1.3750	[34.93]	1.656	[42.06]	1.734	[44.04]	.178	[4.52]	1.455	[36.96]	1.4711-32	109
1500	1.5000	[38.10]	1.844	[46.84]	1.921	[48.79]	.240	[6.10]	1.580	[40.13]	1.5961-32	119
1562	1.5625	[39.69]	1.844	[46.84]	1.921	[48.79]	.240	[6.10]	1.642	[41.71]	1.6581-32	124
1625	1.6250	[41.28]	2.062	[52.37]	2.140	[54.36]	.240	[6.10]	1.705	[43.31]	1.7211-32	129

METRIC SIZES AVAILABLE ON REQUEST

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

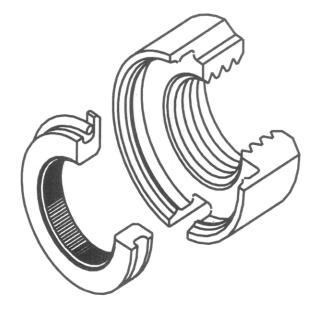
SL61WT

OF 2

SHEET 2

LOCKWASHER, RETAINING REMOVAL-THREADED, STA-LOK, SAE SERIES

SHUR-LOK


15

1997 MAR 25 Z

REVISION

Locknut - Positive Lock

STA-LOK, SNAP-IN

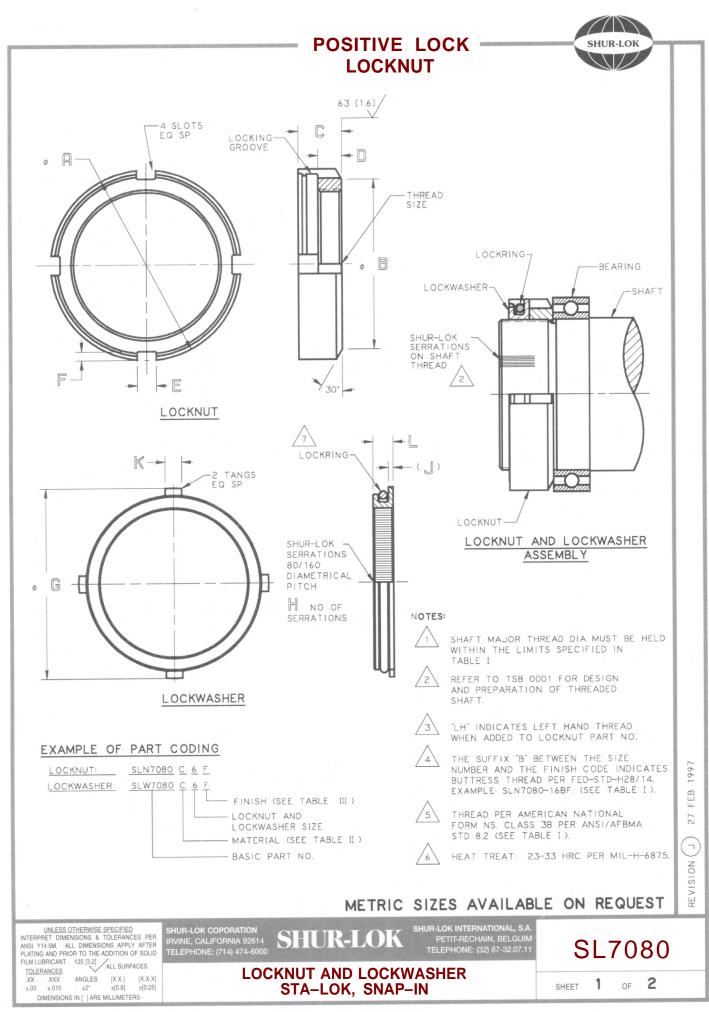
FEATURES AND BENEFITS

- Positive mechanical lock that is not dependent on lubricants or plating for repeatability.
- Achieves precise preload serrations provide adjustment that eliminates back-off or overtorque.
- Maintains fatigue strength at reduced weight. External serrations in the nonload carrying portion of the thread eliminates keyways allowing reduction of shaft wall thickness or diameter.
- Key way stress concentrations are eliminated.
- Internal serrations of washer mates with serrated shaft.
- Serration clearance for ease of washer installation and removal.
- External lugs of serrated washer engages slots of nut.
- Internal groove of nut accepts retaining ring of washer.
- Can be designed in various wrenching configurations.

SHAFT/BOLT SERRATIONS

Broaching is required on shaft or bolt. For installation and removal of locknuts and lockwashers, refer to Technical Sales Bulletin - TSB 0001.

APPLICATIONS


- Where ease of installation is preferred.
- Non-rotating applications where positive retention is desired.
- Where achieving precise preload is critical and existing nuts cannot provide adequate adjustment.
- Where weight reduction is a priority and shaft wall thickness or diameter can be reduced.
 For example: where keyway can be eliminated.
- Allows for better shaft balance than conventional positive locks.

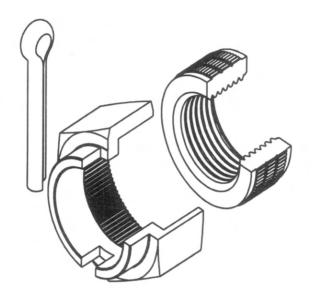
SERRATION CLEARANCE OR INTERFERENCE FIT

Clearance fit is provided by Shur-Lok for ease of installation.

THREAD SIZE

.250 inch and larger.

POSITIVE LOCK -LOCKNUT



27 FEB 1997

REVISION

	LOCKNUT THREAD SIZE	FOR SHA THD MA DIA		¢	φB	C			F	¢G	H	J REF	K		RING	CALC WEIGH /ASSY LB
	5	МАХ	MIN						MIN			REF			REF	(Kg)
1	.391-32	.391 [9.93]	.386 [9.80]	.812 [20.62]	.512 [13.00]	.369 [9.37]	.188 [4.78]	.190 [4.83]	.110 [2.79]		30	.060 [1.52]	.160 [4.06]	.181 [4.60]	.042 [1.07]	.03 [.014]
5	.469-32	.469 [11.91]	.462 [11.73]	.875 [22.23]	.606 [15.39]	.390 [9.91]	.188 [4.78]	.190 [4.83]	.110 [2.79]		36	.060 [1.52]	.160 [4.06]	.202 [5.13]	.063 [1.60]	.04 [.018]
3	.586-32	.586 [14.88]	.581 [14.76]	1.000 [25.40]	.730 [18.54]	.421 [10.69]	.219 [5.56]	.190 [4.83]	.110 [2.79]		46	.060 [1.52]	.160 [4.06]	.202 [5.13]	.063 [1.60]	.05 [.023]
4	.664-32	.664 [16.87]	.659 [16.74]	1.125 [28.58]	.856 [21.74]	.439 [11.15]	.219 [5.56]	.190 [4.83]	.110 [2.79]		52	.060 [1.52]	.160 [4.06]	.220 [5.59]	.081 [2.06]	.07 [.032]
5	.781-32	.780 [19.81]	.775 [19.69]	1.250 [31.75]	.930 [23.62]	.470 [11.94]	.250 [6.35]	.190 [4.83]	.110 [2.79]	1.250 [31.75]	61	.060 [1.52]	.160 [4.06]	.220 [5.59]	.081 [2.06]	.08 [.036]
6	.969-32	.967 [24.56]	.962 [24.43]	1.437 [36.50]	1.168 [29.67]	.470 [11.94]	.250 [6.35]	.190 [4.83]	.110 [2.79]		76	.060 [1.52]	.160 [4.06]	.220 [5.59]	.081 [2.06]	.10 [.045]
7	1.173-18	1.173 [29.79]	1.168 [29.67]	1.688 [42.88]	1.418 [36.02]	.522 [13.26]	.281 [7.14]	.250 [6.35]	.110		93	.060 [1.52]	.220 [5.59]	.241 [6.12]	.096 [2.44]	.14 [.064]
8	1.376-18	1.376 [34.95]	1.371 [34.92]	1.875 [47.63]	1.637 [41.58]	.522 [13.26]	.281 [7.14]	.250	.110		109	.060 [1.52]	.220 [5.59]	.241 [6.12]	.096 [2.44]	.17 [.077]
9	1.563-18	1.563	1.558 [39.57]	2.062 [52.37]	1.824	.522 [13.26]	.281	.250	.110	2.062	124	.060	.220 [5.59]	.241 [6.12]	.096 [2.44]	.21 [.095]
10	1.767-18	1.767	1.762	2.250	2.043	.553	.312	.250	.110	2.250	140	.060	.220	.241	.096	.25
11	1.967-18	1.967 [49.96]	1.962 [49.83]	2.500	2.230	.577	.312	.250	.110	2.500	156	.065	.220	.265	.105	.31
12	2.157-18	2.155	2.150	2.750	2.480 [62.99]	.577	.312	.250	.110	2.750	171	.065	.220	.265	.105	.38
13	2.360-18	2.360	2.355	2.937	2.668	.609	.344	.250	.110	2.937	188	.065	.220	.265	.105	.43
14	2.548-18	[59.94] 2.548	[59.82] 2.543	[74.60] 3.125	2.856	.609	.344	.375	.110	3.125	203	.065	.345	.265	.105	.45
15	2.751-18	2.751	2.746	[79.38] 3.375	[72.54] 3.074	.624	.344	.375	.125	3.375	219	.070	.345	.280	.125	.53
16	2.933-12	[69.88] 2.930	2.925	[85.73] 3.562	[78.08] 3.356	.655	.375	.375	.125	3.562	233	.070	[8.76] .345	.280	.125	.60
16B	2.933-12	[74.42] 2.930	[74.30] 2.925	[90.47] 3.562	3.356	.655	.375	.375	.125	3.562	233	.070	[8.76] .345	.280	.125	.60
4	BUT TRESS	[74.42] 3.137	[74.30] 3.132	[90.47] 3.906	[85.24] 3.574	.655	.375	.375	.125		250	.070	.345	.280	.125	.64
18	3.340-12	[79.68] 3.340	[79.55] 3.335	(99.21) 4.125		.655		[9.53]	.125	[99.21]	266		.345	.280	.125	[.290] .67
10	3.527-12	[84.84] 3.527		4.312					[3.18]	[104.78]	281		[8.76]		.125	
		[89.59]	[89.46]	[109.52]		.655		[9.53]	[3.18]	[109.52]	297		[8.76]			
20	3.730-12	3.730 [94.74]	3.725 [94.62]	4.531 [115.09]			[9.53]	[9.53]		[115.09]	L7/		[8.76]			[.354]
MATL	11	м	ATERI	AL				FINIS	+ 1			FI	INISH			
CODE	STEEL 4	130			\wedge	_	\vdash	C O DE F	\rightarrow	BLACK O	XIDE					
-	PER AMS	6370 0			<u>6</u>	592		Ρ		CAD PLA	TE P	ER QQ	-P-416	5, TYPE	II, C	LASS 2
C CA	CRES 30				AS I M-A-	302	-	NON FM	E	PASSIVA				13924	AND D	RI-FILM
N	INCONEL	718 PE	ER AMS	5662					-+	LUBE PER	RMIL					
									0	SIZES				ON	RF	
	RWISE SPECIFIED		IUR-LOK C	OPORATIO	۷					HUR-LOK IN	-	at and			NL.	a o L
ET DIMENSIO	NS & TOLERANC	AFTER IR	VINE, CALI	FORNIA 926 (714) 474-6	514	HU	K-I	D	K		RECHA	IN, BELGI	UIM	S	SĽ	70
RICANT. 125 ANCES	[3.2] ALL SURF	ACES			OCK	JIIT		100	~KIN	/ASHE	P					

STA-LOK, COTTER KEY

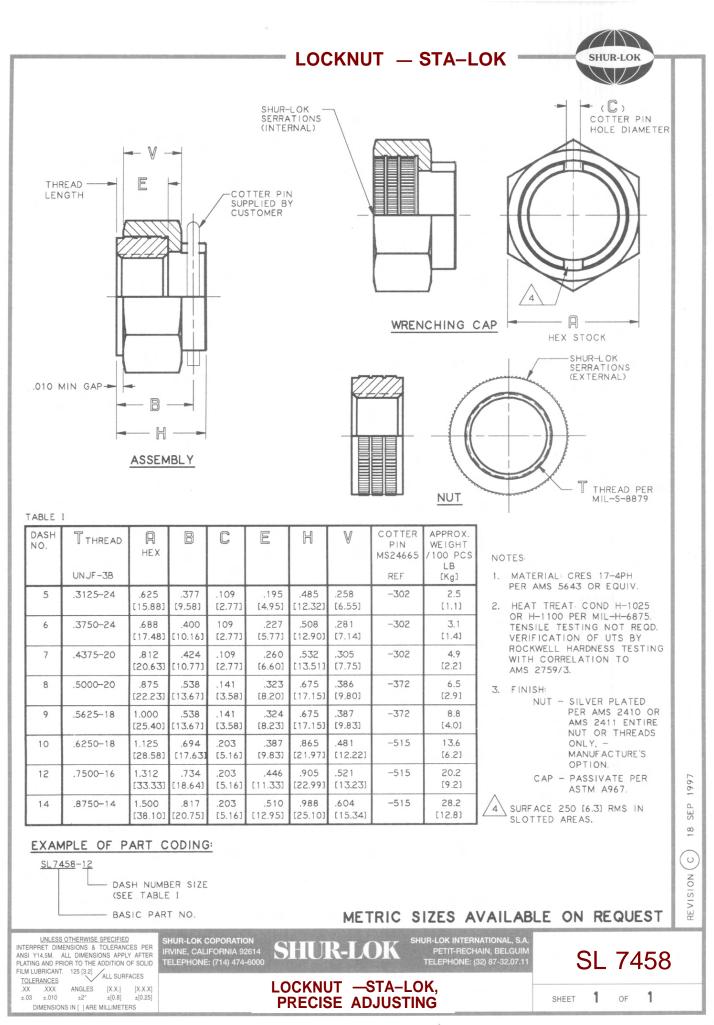
FEATURES AND BENEFITS

- Positive Mechanical Lock that is not dependent on lubricants or plating for repeatability.
- Achieves precise preload serrations provide adjustment that eliminates back-off or over-torque.
- Typically interchangeable with most castellated nuts.
- External serrations on nut mates with internal serrations of cap.
- Serration clearance for ease of cap installation and removal.
- Can be designed in various wrenching configurations.
- Use sealant for applications with minor vibration.
- Free-running nut minimizes thread damage on mating part.

APPLICATIONS

Where achieving precise preload is critical and castellated nuts cannot provide adequate adjustment.

INSTALLATION SHAFT/BOLT SERRATIONS


Hex-cap is first used to thread and wrench serrated nut, then remounted to align it's slots with keyhole in shaft Cotter key is then fitted to lock assembly. Broaching serrations on shaft not required, as nut is locked with cotter pins. For installation & removal refer to TSB0005.

SERRATIONS - CLEARANCE OR INTERFERENCE FIT

Clearance fit is provided by Shur-Lok.

THREAD SIZE

.312 inch and larger.

STA-LOK, KEWAY

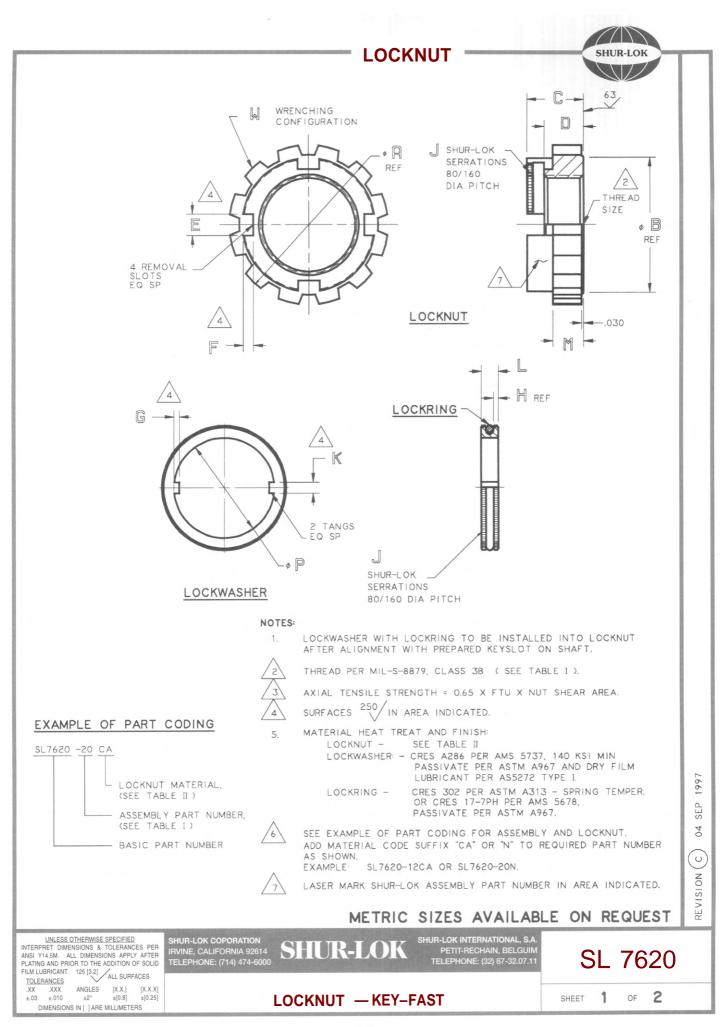
FEATURES AND BENEFITS

- Positive mechanical lock that is not dependent on lubricants or plating for repeatability.
- Achieves precise preload serrations provide ► adjustment that eliminates back-off or overtorque.
- Eliminates sheet metal tab and cup washers ► that can cause foreign object damage problems or preload loss sometimes associated with this type of soft washers.
- Internal keyed lug on washer mates with shaft keyway.
- Internal serrations of nut mates with external serrations of washer.
- Split ring engages internal nut groove for positive retention.
- Split ring is preassembled to serrated washer.
- Can be designed in various wrenching configurations
- Free-running nut minimizes thread damage on ► mating part.

APPLICATIONS

- Retrofit keyed washers where precise preload must be achieved.
- New designs where keying shafts is preferred over serrating shafts.
- Where achieving precise preload is critical.

SHAFT/BOLT SERRATIONS


Broaching serrations of shaft not required, as nut is locked with keyways.

SERRATIONS - CLEARANCE OR INTERFERENCE FIT

Clearance fit.

THREAD SIZE

.500 inch and larger.

LOCKNUT

TABLE I											
ASSEMBL Y	LOCKNUT	¢۹	ø B	C	D		F	UMBER OF	M	AXIAL TE STRENGTI	
PART NUMBER	THREAD SIZE	REF	REF					SERRS		СА	Ν
SL7620-6	.3750-24 UNJF	1.037-1.04	.908	.390	.230	.150	.070	54	.130	15,200	19,600
SL7620-8	.5000-20 UNJF	1.185-1.19	7 1.038	.440	.260	.150	.090	64	.160	24,000	30,000
SL7620-10	.6250-18 UNJF	1.333-1.34	5 1.169	.500	.300	.190	.110	74	.205	35,000	46,200
SL7620-12	.7500-16 UNJF	1.480-1.49	3 1.298	.550	.330	.190	.110	84	.205	42,000	56,000
SL7620-14	.8750-14 UNJF	1.628-1.64	1 1.429	.595	.375	.190	.110	94	.250	58,000	76,000
SL7620-16	1.0000-12 UNJF	1.775-1.78	8 1.559	.645	.425	.190	.110	104	.300	78,000	102,000
SL7620-18	1.1250-12 UNJF	1.924-1.93	7 1.690	.711	.470	.250	.142	114	.345	98,000	130,000
SL7620-20	1.2500-12 UNJF	1.998-2.01	1 1.755	.766	.525	.250	.142	124	.400	124,000	163,000
SL7620-22	1.3750-12 UNJF	2.145-2.15	8 1.885	.791	.550	.250	.142	134	.425	143,000	189,000
SL7620-24	1.5000-12 UNJF	2.293-2.30	7 2.016	.791	.550	.250	.142	144	.425	156,000	207,000
SL7620-26	1.6250-12 UNJ	2.440-2.45	4 2.146	.791	.550	.250	.142	154	.425	170,000	225,000
SL7620-28	1.7500-12 UNJ	2.589-2.60	3 2.276	.791	.550	.250	.142	164	.425	184,000	242,000
TABLE I CON	TINUED										
0.0				Ι							
W							G	н	K	L	• P
WRENCHING	LOCKNUT		WASHER	-	OCKRI		0	UU	UZ		φυ
CONFIGURATIO	N PART NUMB	ER PARI	NUMBER	PAR	T NUM	BER	±.005	5 REF	±.003	3	±.005
MS33787-28	SLN7620-6	SLW	7620-6	SL	R7620-	-6	.060	.060	.060	.160	.400
MS33787-32	SLN7620-8	SLW	7620-8	SL	R7620-	-8	.065	.060	.080	.180	.525
MS33787-36	SLN7620-1	O SLW	7620-10	SL	R7620-	-10	.068	.050	.110	.200	.650
MS33787-40	SLN7620-1	2 SLW	7620-12	SL	R7620-	-12	.070	.060	.110	.220	.770
MS33787-44	SLN7620-1	4 SLW	7620-14	SL	R7620-	-14	.075	.060	.110	.220	.895
MS33787-48	SLN7620-1	6 SLW	7620-16	SL	R7620-	-16	.083	.060	.110	.220	1.020
MS33787-52	SLN7620-1	8 SLW	7620-18	SL	R7620-	-18	.083	.060	.146	.241	1.145
MS33787-54	SLN7620-2	O SLW	7620-20	SL	R7620-	-20	.083	.060	.146	.241	1.270
MS33787-58	SLN7620-2	2 SLW	7620-22	SL	R7620-	-22	.083	.060	.146	.241	1.395
MS33787-62	SLN7620-2	4 SLW	7620-24	SL	R7620-	-24	.083	.060	.146	.241	1.520
MS33787-66	SLN7620-2	6 SLW	7620-26	SL	R7620-	-26	.083	.060	.146	.241	1.645
MS33787-70	SLN7620-2	8 SLW	7620–28	SL	R7620-	-28	.083	.060	.146	.241	1.770

TABLE II	FOR LOCKNUT ONLY		
MATERIAL CODE	MATERIAL	HEAT TREAT	FINISH
СА	A286 PER AMS 5737 140 KSI MIN	NONE	PASSIVATE PER ASTM A967 DRY FILM LUBRICANT PER AS5272 TYPE I
Ν	INCONEL 718 PER AMS 5662		DRY FILM LUBRICANT PER AS5272 TYPE I

04 SEP 1997

REVISION (C)

SL7620

OF 2

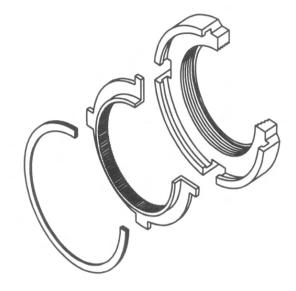
SHEET 2

R-LOK

METRIC SIZES AVAILABLE ON REQUEST

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES TOLERANCES XX XXX ANGLES [X.X.] [X.X.X] ±.03 ±.010 ±2° ±[0.8] ±[0.25] DIMENSIONS IN [] ARE MILLIMETERS


SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

LOCKNUT - KEY-FAST

SHUR-LOK

Locknut - Positive Lock

STA-LOK, SPIRAL POSITIVE LOCK

FEATURES AND BENEFITS

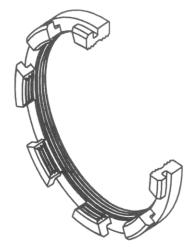
- Positive mechanical lock that is not dependent on lubricants or plating for repeatability.
- Achieves precise preload-serrations provide adjustment that eliminates back-off or overtorque.
- Maintains fatigue strength at reduced weight. External serrations in the nonload carrying portion of the thread. Eliminates keyways allowing reduction of shaft wall thickness or diameter.
- Key way stress concentrations are eliminated.
- Internal serrations of washer mates with serrated shaft.
- Designed with either interference fit or clearance fit.
- External lugs of serrated washer engages slots of nut.
- Spiral retaining ring feeds into internal groove of nut to provide positive retention of washer.
- Nut, washer, and spiral retaining ring supplied as separate components.
- Can be designed in various wrenching configurations.

APPLICATIONS

- Interference type where there is high RPM and/or load reversals.
- Clearance type for ease of installation in nonrotating applications.
- Where achieving precise preload is critical and existing nuts cannot provide adequate adjustment.
- Where weight reduction is a priority and shaft wall thickness or diameter can be reduced.
- Where a positive mechanical lock is required.

SHAFT/BOLT SERRATIONS

Broaching serrations on shaft/bolt is required. For installation and removal of locknuts and lockwashers refer to Technical Sales Bulletin-TSB 0001.


SERRATIONS - CLEARANCE OR INTERFERENCE FIT

Customer Specified:

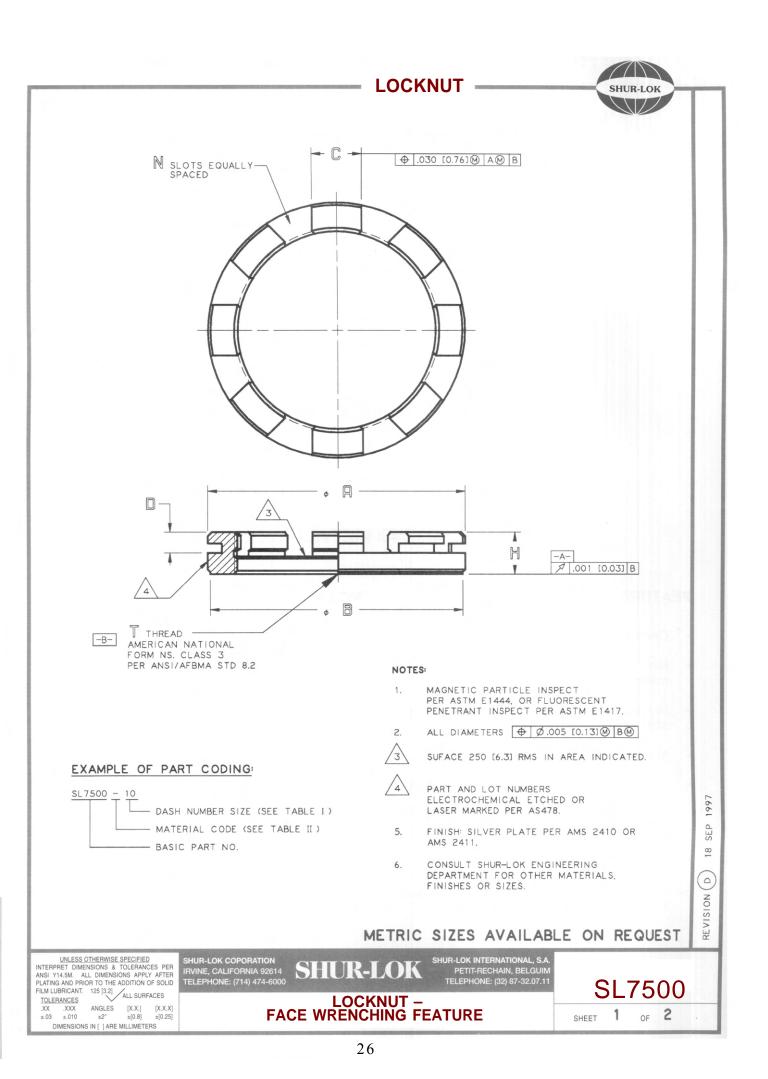
Interference fit recommended for high RPM applications.

Clearance fit recommended for non-rotating applications.

Locknut - Prevailing Torque

FACE WRENCHING METALLIC LOCK

FEATURES AND BENEFITS


- One piece design.
- High temperature capability (limited by material selected).
- 50 cycle reusability capable with proper plating and use of lubricants.
- Available in alloy steel and A286 materials.
- Retains locking ability even when installed on other than original shaft.
- Minimal envelope.
- ► Face wrenching (castellated).
- Locking feature less sensitive to high seating torque.

NOTATIONS

- Should not be used without a secondary Lubricant.
- Not recommended for keyed shafts.

THREAD SIZE

▶ 1.250 inch and larger.

LOCKNUT -

TABLE I

DASH NO.	THREAD	¢ +.000 005 [+0.00] [-0.13]	¢ +.000 005 [+0.00] [-0.13]	+.000 010 [+0.00] [-0.25]		H	\mathbb{N}	APPROX. WEIGHT 100 PCS LBS [Kg]
1	2.157-18	2.711 [68.85]	2.656 [67.46]	.540 [13.72]	.222 [5.64]	.449 [11.40]	8	19.63 [8.90]
2	2.360-18	2.895 [73.53]	2.840 [72.14]	.565 [14.35]	.222 [5.64]	.449 [11.40]	8	20.75 [9.41]
3	2.548-18	3.118 [79.20]	2.840 [72.14]	.616 [15.65]	.222 [5.64]	.449 [11.40]	8	23.33 [10.58]
4	2.751-18	3.368 [85.55]	3.313 [84.15]	.660 [16.76]	.222 [5.64]	.449 [11.40]	8	26.71 [12.12]
5	2.933-12	3.618 [91.90]	3.563 [90.50]	.710 [18.03]	.333 [8.46]	.671 [17.04]	8	47.80 [21.63]
6	3.137-12	3.899 [99.03]	3.844 [97.64]	.765 [19.43]	.333 [8.46]	.671 [17.04]	8	55. 38 [25.12]
7	3.340-12	4.086 [103.78]	4.031 [102.39]	.540 [13.72]	.333 [8.46]	.671 [17.04]	12	57.37 [26.02]
8	3.527-12	4.265 [108.33]	4.210 [106.93]	.565 [14.35]	.333 [8.46]	.671 [17.04]	12	60.13 [27.27]
9	3.730-12	4.425 [112.40]	4.370 [111.0]	.592 [15.04]	.333 [8.46]	.671 [17.04]	12	60.43 [27.41]
10	3.918-12	4.675 [118.75]	4.620 [117.35]	.616 [15.65]	.333 [8.46]	.671 [17.04]	12	67.66 [30.69]
11	4.122-12	4.895 [124.33]	4.840 [122.94]	.642 [16.31]	.333 [8.46]	.671 [17.04]	12	72.14 [32.72]
12	4.325-12	5.135 [130.43]	5.080 [129.03]	.660 [16.76]	.333 [8.46]	.671 [17.04]	12	78.34 [35.53]

TABLE III · PERFORMANCE DATA TABLE II MAX LOCKING TORQUE MIN LOCKING TORQUE DASH T CODE MATERIAL NO. THREAD ALLOY STEEL 4130 PER MIL-S-6758 in-lb N-m in-lb OR AMS 6370, AMS 6371 (TUBING) _ 2.157-18 [91] 120 1 805 Ftu = 150 Ksi min A286 CRES PER AMS 5737 2 [97] 130 С 2.360-18 860 895 [101] 138 3 2.548-18 950 145 4 2.751-18 [107] 155 [111] 5 2.933-12 985 [116] 3.137-12 160 6 1030 [121] 170 7 3.340-12 1070 178 8 3.527-12 1100 [124] [129] 9 3.730-12 1145 185 10 3.918-12 1175 [133] 190 4.122-12 1200 [136] 200 11 12 4.325-12 1230 [139] 205 SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11 UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI 1/1.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3,2] ALL SURFACES SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000 **SHUR-LOK** LOCKNUT -FACE WRENCHING FEATURE SHEET

SEP 8

9

REVISION

1997

METRIC SIZES AVAILABLE ON REQUEST

SL7500

2

N-m

[14]

[15]

[16]

[16]

[18]

[18]

[19]

[20]

[21]

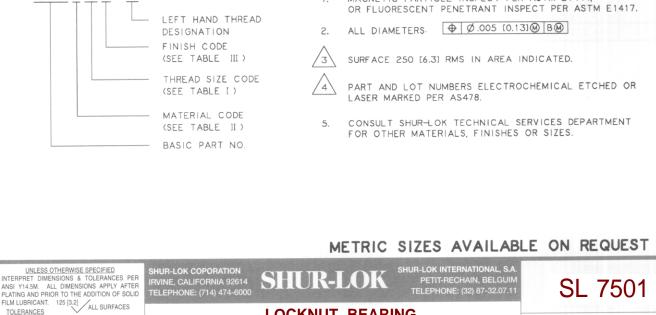
[22]

[23]

[23]

2 OF

SHUR-LOK $\langle 1 / /$



 TOLERANCES
 ALL SURFACES

 .XX
 .XXX
 ANGLES
 [X.X.]

 ±.03
 ±.010
 ±2°
 ±[0.8]
 ±[0.25]
 DIMENSIONS IN [] ARE MILLIMETERS

27

1997

SEP

8

(w

REVISION

SHEET 1

OF 2

28

LOCKNUT, BEARING

FACE WRENCHING

ANGLES [X.X.] [X.X.X] ±2° ±[0.8] ±[0.25]

DIMENSIONS IN [] ARE MILLIMETERS

.XX .XXX ±.03 ±.010

LOCKNUT - FACE WRENCHING -

TABLE 1 :

SIZE CODE	THREAD	¢ () +.000 005 [+0.00] [-0.13]	+.000 010 [+0.00] [-0.25]	N	APPROX. WEIGHT PER 100 PCS LBS [Kg]
25	1.5625-16UNJ	1.876 [47.65]	.484 [12.29]	6	9.97 [4.52]
28	1.7500-16UNJ	2.137 [54.28]	.514 [13.06]	6	12.44 [5.64]
32	2.0000-16UNJ	2.411 [61.24]	.438 [11.13]	8	14.90 [6.76]
36	2.2500-16UNJ	2.683 [68.15]	.490 [12.45]	8	17.46 [7.92]
40	2.5000-16UNJ	2.955 [75.06]	.540 [13.72]	8	20.19 [9.16]
44	2.7500-16UNJ	3.225 [81.92]	.592 [15.04]	8	23.00 [10.43]
48	3.0000-16UNJ	3.493 [88.72]	.642 [16.31]	8	25.84 [11.72]
52	3.2500-16UNJ	3.761 [95.53]	.464 [11.79]	12	28.83 [13.08]
56	3.5000-16UNJ	4.027 [102.29]	.498 [12.65]	12	31.85 [14.42]
60	3.7500-16UNJ	4.291 [109.00]	.532 [13.51]	12	34.85 [15.81]
64	4.0000-16UNJ	4.555 [115.70]	.565 [14.35]	12	37.97 [17.22]
68	4.2500-16UNJ	4.816 [122.33]	.628 [15.95]	12	43.41 [19.69]

TABLE II :

CODE	MATERIAL
-	ALLOY STEEL, 4130 PER MIL-S-6758 OR AMS 6370, AMS 6371 (TUBING) Ftu = 150 KSI MIN.
С	CRES A286 PER AMS5737

TABLE III :

CODE	FINISH
NO C ODE	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS 2411
N	NEDOX SF-2 ANTI-GALLANT COATING, .00020006 [.005015] THICKNESS ON ALL SURFACES. (MFR GENERAL MAGNAPLATE)

T		117 .	DEDE	ODMANICE	
L	ABLE	IV.	PERF	ORMANCE	DATA

SIZE	T	MAX LOCK	ING TORQUE	MIN LOCKI	NG TORQUE
CODE	THREAD	in-lb	N-m	in-lb	N-m
25	1.5625-16UNJ				
28	1.7500-16UNJ				
32	2.0000-16UNJ	765	[86]	110	[14]
36	2.2500-16UNJ	825	[93]	120	[14]
40	2.5000-16UNJ	890	[101]	135	[15]
44	2.7500-16UNJ	950	[107]	145	[16]
48	3.0000-16UNJ	1000	[113]	155	[18]
52	3.2500-16UNJ	1050	[119]	165	[19]
56	3.5000-16UNJ	1100	[124]	175	[20]
60	3.7500-16UNJ	1150	[130]	185	[21]
64	4.0000-16UNJ	1200	[136]	195	[22]
68	4.2500-16UNJ				

1997 SEP 18

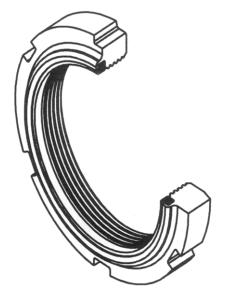
REVISION E

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [32] ALL SURFACES TOLERANCES
 IOLEHANCES
 XX
 XXX
 ANGLES
 [X.X.]
 [X.X.X]

 ±.03
 ±.010
 ±.2°
 ±[0.8]
 ±[0.25]
 DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11 LOCKNUT, BEARING FACE WRENCHING


SHUR-LOK

SL7501

SHEET 2 OF 2

Locknut – Prevailing Torque

(VESPEL) NON-METALLIC LOCK

FEATURES AND BENEFITS


- Various wrenching options:
 Slots
 Holes
 - Hexagon
- Locking feature adaptable to various nut designs.
- Available in wide variety of materials and finishes.
- Qualified vespel material on various military programs.
- Does not externally trap dirt, debris, etc. (No slot or castellations).

NOTATIONS

- Should not be used without a secondary lubricant.
- ▶ Not recommended for keyed (slotted) shafts.
- ▶ Max operating temperature 450°F.
- Locking feature performance is very sensitive to shaft variations.
- Seating torques will have a more damaging effect on reusability for vespel than on metallic locknuts.

THREAD SIZE

.250 inch and larger.

LOCKNUT — PREVAILING -TORQUE

TABLE	I													
SIZE CODE	THREAD -16UNJ-3B	ФД	¢	£.015 [±0.08]		L)	F	G	Н	J	K	L	M RAD	¢ [N]
8	.5000	1.060 [26.92]	.782 [19.86]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	.842 [21.39]	4	.125 [3.17]	8	.020 [0.51]	.530 [13.46]
14	.8750	1.439 [36.55]	1.157 [29.39]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	1.217 [30.91]	4	.125 [3.17]	8	.020 [0.51]	.905 [22.99]
16	1.0000	1.565 [39.75]	1.282 [32.56]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	1.342 [34.09]	4	.125 [3.17]	8	.020 [0.51]	1.030 [26.16]
18	1.1250	1.691 [42.95]	1.407 [35.74]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	1.467 [37.26]	4	.125 [3.17]	8	.020 [0.51]	1.155 [29.34]
20	1.2500	1.818 [46.18]	1.532 [38.91]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	1.592 [40.44]	4	.125 [3.17]	8	.020 [0.51]	1.280 [32.51]
22	1.3750	1.944 [49.38]	1.657 [42.09]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	1.717 [43.61]	4	.125 [3.17]	8	.020 [0.51]	1.405 [35.69]
24	1.5000	2.070 [52.58]	1.782 [45.26]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	3	1.842 [46.79]	6	.250 [6.35]	12	.020 [0.51]	1.530 [38.86]
25	1.5625	2.133 [54.18]	1.844 [46.84]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	3	1.904 [48.36]	6	.250 [6.35]	12	.020 [0.51]	1.592 [40.44]
26	1.6250	2.196 [55.78]	1.907 [48.44]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	3	1.967 [49.96]	6	.250 [6.35]	12	.020 [0.51]	1.655 [42.04]
28	1.7500	2.322 [58.98]	2.032 [51.61]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	3	2.092 [53.14]	6	.250 [6.35]	12	.020 [0.51]	1.780 [45.21]
32	2.0000	2.575 [65.41]	2.282 [57.96]	.413 [10.49]	.333 [8.46]	.290 [7.37]	.050 [1.27]	3	2.342 [59.49]	6	.250 [6.35]	12	.020 [0.51]	2.030 [51.56]
36	2.2500	2.828 [71.83]	2.532 [64.31]	.425 [10.79]	.345 [8.76]	.302 [7.67]	.050 [1.27]	3	2.592 [65.84]	6	.250 [6.35]	12	.020 [0.51]	2.280 [57.91]
40	2.5000	3.080 [78.23]	2.781 [70.64]	.437 [11.10]	.357 [9.07]	.314 [7.98]	.050 [1.27]	3	2.841 [72.16]	6	.250 [6.35]	12	.020 [0.51]	2.530 [64.26]
44	2.7500	3.332 [84.63]	3.031 [76.99]	.450 [11.43]	.370 [9.40]	.328 [8.33]	.050 [1.27]	3	3.091 [78.51]	6	.250 [6.35]	12	.020 [0.51]	2.780 [70.61]
48	3.0000	3.585 [91.06]	3.281 [83.34]	.463 [11.76]	.383 [9.73]	.340 [8.64]	.050 [1.27]	4	3.341 [84.86]	8	.250 [6.35]	16	.020 [0.51]	3.030 [76.96]

TABLE II

ITEM	MATL CODE	MATERIAL	HEAT TREAT	FINISH
	EG	ALLOY STEEL 4340	26-32 HRC PFR	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS2411 ON ALL SURFACES
LOCKNUT	EK	PER AMS6414 OR AMS6415	MIL-H-6875	BLACK OXIDE PER MIL-C-13924, CL1
	FM	CRES A286 PER AMS5737	140 KSI MIN	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS2411 ON ALL SURFACES
LOCKING	—	VESPEL SP1 (DUPONT)		

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES IOLERANCES XX XXX ANGLES [X.X] [X.X] ±.03 ±.010 ±2° ±[0.8] ±[0.8] DIMENSIONS IN [] ARE MILLIMETERS

METRIC SIZES AVAILABLE ON REQUEST

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL7515 SHEET 2 OF 3 18 SEP 1997

REVISION B

32

LOCKNUT – VESPEL LOCKING FEATURE

SHUR-LOK

LOCKNUT -PREVAILING TORQUE

TABLE	III TORQUE P	PERF ORMANCE	ICE							
		MAX	MIN FIRST CYCLE	MIN FIFTEENTH	MAX TO BI	E MEASUR	MAX INSTALLATION AND MIN BREAKAWAY TORQUES TO BE MEASURED ON MANDRELS AS DEFINED BELOW	KAWAY T(DRQUES BELOW	
SIZE CODE		TORQUE	BREAKAWAY TORQUE	CYCLE BREAKAWAY TOBOUE	DIMENSI	TORQUE TE	DIMENSIONS FOR MAX INSTALLATION TORQUE TEST MANDREL	DIME	NSIONS F TORQUE	DIMENSIONS FOR MIN BREAKAWAY TORQUE TEST MANDREL
	PER MIL-S-8879		[N.m]	IN-LB [N.m]	MAJOR	PITCH DIA	MINOR DIA	MAJOR DIA	PITCH DIA	MINOR
œ	.5000	120 [13.6]	20 [2.3]	10 [1.1]	.5000 [12.700]	.4576 [11.623]	.42054278 [10.681] - [10.866]	.4906 [12.461]	.4576 [11.623]	.42054278 [10.681] - [10.866]
14	.8750	370 [41.8]	75 [8.5]	35 [4.0]	.8750 [22.225]	.8326 [21.148]	.79548028 [20.203] - [20.391]	.8656 [21.986]	.8326 [21.148]	.79548028 [20.203] - [20.391]
16	1.0000	480 [54.2]	95 [10.7]	45 [5.1]	1.0000 [25.400]	.9575 [24.320]	.92039278 [23.376] - [23.566]	.9906 [25.161]	.9575 [24.320]	.92039278 [23.376] - [23.566]
-1	1.1250	610 [68.9]	125 [14.1]	60 [6.8]	1.1250 [28.575]	1.0825 [27.495]	1.0452 - 1.0528 [26.548] - [26.741]	1.1156 [28.336]	1.0825 [27.495]	1.0452 - 1.0528 [26.548] - [26.741]
20	1.2500	750 [84.7]	155 [17.5]	75 [8.5]	1.2500 [31.750]	1.2075 [30.670]	1.1702 - 1.1778 [29.723] - [29.916]	1.2406	1.2075 [30.670]	1.1702 - 1.1778 [29.723] - [29.916]
22	1.3750	910 [102.8]	185 [20.9]	90 [10.2]	1.3750 [34.925]	1.3324 [33.843]	1.2951 - 1.3028 [32.896] - [33.091]	1.3656 [34.686]	1.3324 [33.843]	1.2951 - 1.3028 [32.896] - [33.091]
24	1.5000	1085 [122.6]	220 [24.9]	110 [12.4]	1.5000 [38.100]	1.4574 [37.018]	1.4201 - 1.4278 [36.071] - [36.266]	1.4906 [37.861]	1.4574 [37.018]	1.4201 - 1.4278 [36.071] - [36.266]
25	1.5625	1175 [132.8]	240 [27.1]	120 [13.6]	1.5625 [39.688]	1.5199 [38.605]	1.4826 - 1.4903 [37.658] - [37.854]	1.5531 [39.449]	1.5199 [38.605]	1.4826 - 1.4903 [37.658] - [37.854]
26	1.6250	1270 [143.5]	260 [29.4]	130 [14.7]	1.6250 [41.275]	1.5824 [40.193]	1.5451 - 1.5528 [39.246] - [39.441]	1.6156 [41.036]	1.5824 [40.193]	1.5451 - 1.5528 [39.246] - [39.441]
28	1.7500	1475 [166.6]	300 [33.9]	150 [16.9]	1.7500 [44.450]	1.7074 [43.368]	1.6700 - 1.6778 [42.418] - [42.616]	1.7406 [44.211]	1.7074 [43.368]	1.6700 - 1.6778 [42.418] - [42.616]
32	2.0000	1930 [218.1]	395 [44.6]	195 [22.0]	2.0000 [50.800]	1.9574 [49.718]	1.9200 - 1.9278 [48.768] - [48.966]	1.9906 [50.561]	1.9574 [49.718]	1.9200 - 1.9278 [48.768] - [48.966]
36	2.2500	2440 [275.7]	500 [56.5]	250 [28.2]	2.2500 [57.150]	2.2074 [56.068]	2.1700 - 2.1778 [55.118] - [55.316]	2.2406 [56.911]	2.2074 [56.068]	2.1700 - 2.1778 [55.118] - [55.316]
40	2.5000	3015 [340.6]	620 [70.1]	310 [35.0]	2.5000 [63.500]	2.4574 [62.418]	2.4199 - 2.4278 [61.465] - [61.666]	2.4906 [63.261]	2.4574 [62.418]	2.4199 – 2.4278 [61.465] – [61.666]
44	2.7500	3645 [411.8]	750 [84.7]	375 [42.4]	2.7500 [69.850]	2.7074 [68.768]	2.6699 - 2.6778 [67.815] - [68.016]	2.7406 [69.611]	2.7074 [68.768]	2.6699 - 2.6778 [67.815] - [68.016]
48	3.0000	4340 [490.4]	895 [101.1]	445 [50.3]	3.0000 [76.200]	2.9573 [75.115]	2.9198 – 2.9278 [74.163] – [74.366]	2.9906 [75.961]	2.9573 [75.115]	2.9198 – 2.9278 [74.163] – [74.366]

METRIC SIZES AVAILABLE ON REQUEST

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI 714.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [32] ALL SURFACES TOLERANCES .XX .XXX ±.03 ±.010

 LEFARCES
 XXX
 ANGLES
 [X.X.]
 [X.X.X]

 3
 ±.010
 ±2°
 ±[0.8]
 ±[0.25]

 DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

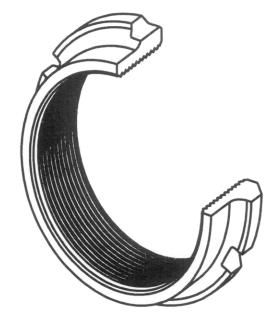
VESPEL LOCKING FEATURE 33

LOCKNUT -

SHUR-LOK

SHEET 3 3 OF

SL 7515


SHUR-LOK

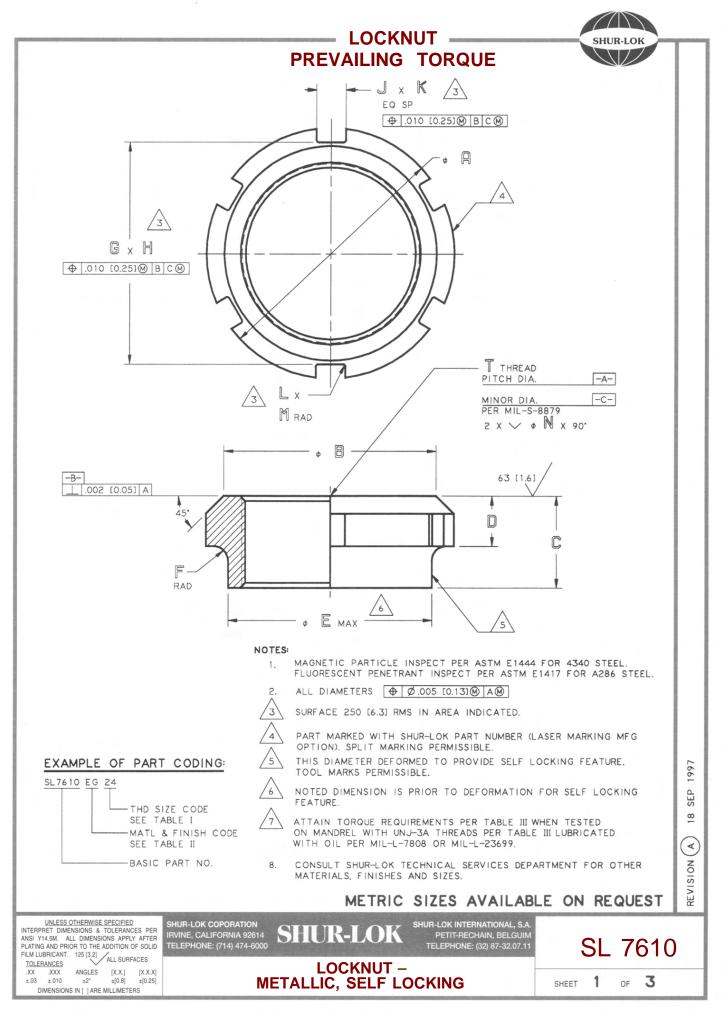
1997 SEP 18

REVISION

Locknut-Prevailing Torque

CRIMP LOCK

FEATURES AND BENEFITS


- Proven and reliable locking feature.
- One piece design.
- Various wrenching options:
 Slots
 Holes
 Hexagon
- High temperature capability (limited by material selected).
- ▶ High axial load capability.

NOTATIONS

- Should not be used without a secondary lubricant.
- Locking feature may remove shaft plating.

THREAD SIZE

.500 to 3.00 inch.

LOCKNUT -**PREVAILING TORQUE**

-	1	\sum
<	SHUR	R-LOK
	1	

TABLE [

TABLL							_							
SIZE CODE	T THREAD -16UNJ-3B	¢	¢B	C ±.015 [±0.38]	D	¢ E Max	FRAD	G	Н	J	K	L	M RAD	\$ N
8	.5000	1.060 [26.92]	.782 [19.86]	.546 [10.31]	.326 [8.28]	.665 [16.89]	.060 [1.52]	2	.842 [21.39]	4	.125 [3.17]	8	.020 [0.51]	.530 [13.46]
14	.8750	1.439 [36.55]	1.157 [29 .3 9]	.546 [13.87]	.326 [8.28]	1.040 [26.42]	.060 [1.52]	2	1.217 [30.91]	4	.125 [3 .17]	8	.020 [0.51]	.905 [22.99]
16	1.0000	1.565 [39.75]	1.282	.546 [13.87]	.326 [8.28]	1.165 [29.59]	.060 [1.52]	2	1.342 [34.09]	4	.125 [3.17]	8	.020 [0.51]	1.030 [26.16]
18	1.1250	1.691 [42.95]	1.407 [35.74]	.546 [13.87]	.326 [8.28]	1.290 [32.77]	.060 [1.52]	2	1.467 [37.26]	4	.125 [3.17]	8	.020 [0.51]	1.155 [29.34]
20	1.2500	1.818 [46.18]	1.532 [38.91]	.546 [13.87]	.326 [8.28]	1.415 [35.94]	.060 [1.52]	2	1.592 [40.44]	4	.125 [3.17]	8	.020 [0.51]	1.280 [32.51]
22	1.3750	1.944 [49.38]	1.657 [42.09]	.546 [13.87]	.326 [8.28]	1.540 [39.12]	.060 [1.52]	2	1.717 [43.61]	4	.125 [3 .17]	8	.020 [0.51]	1.405 [35.69]
24	1.5000	2.070 [52.58]	1.782 [45.26]	.766 [19.46]	.326 [8.28]	1.730 [43.94]	.120 [3.05]	3	1.842 [46.79]	6	.250 [6.35]	12	.020 [0.51]	1.530 [38.86]
25	1.5625	2.133 [54.18]	1.844 [46.84]	.766 [19.46]	.326 [8.28]	1.795 [45.59]	.120 [3.05]	3	1.904 [48.36]	6	.250 [6.35]	12	.020 [0.51]	1.592 [40.44]
26	1.6250	2.196 [55.78]	1.907 [48.44]	.766 [19.46]	.326 [8.28]	1.855 [47.12]	.120 [3.05]	3	1.967 [49.96]	6	.250 [6.35]	12	.020 [0.51]	1.655 [42.04]
28	1.7500	2.322 [58.98]	2.032 [51.61]	.766 [19.46]	.326 [8.28]	1.990 [50.55]	.120 [3.0 5]	3	2.092 [53.14]	6	.250 [6.35]	12	.020 [0.51]	1.780 [45.21]
32	2.0000	2.575 [65.41]	2.282 [57.96]	.772 [19.61]	.333 [8.46]	2.230 [56.64]	.120 [3.05]	3	2.342 [59.49]	6	.250 [6.35]	12	.020 [0.51]	2.030 [51.56]
36	2.2500	2.828 [71.83]	2.532 [64.31]	.785 [19.94]	.345 [8.76]	2.480 [62.99]	.120 [3.05]	3	2.592 [65.84]	6	.250 [6.35]	12	.020 [0.51]	2.280 [57.91]
40	2.5000	3.080 [78.23]	2.781 [70.64]	.798 [20.27]	.357 [9.07]	2.730 [69.34]	.120 [3.05]	3	2.841 [72.16]	6	.250 [6.35]	12	.020 [0.51]	2.530 [64.26]
44	2.7500	3.332 [84.63]	3.031 [76.99]	.810 [20.57]	.370 [9.40]	2.980 [75.69]	120 [3.05]	3	3.091 [78.51]	6	.250 [6.35]	12	.020 [0.51]	2.780 [70.61]
48	3.0000	3.585 [91.06]	3.281 [83.34]	.825 [20.96]	.383 [9.73]	3.230 [82.04]	.120 [3.05]	4	3.341 [84.86]	8	.250 [6.35]	16	.020 [0.51]	3.030 [76.96]

TABLE II

MATL CODE	MATERIAL	HEAT TREAT	FINISH
EG	ALLOY STEEL 4340 PER AMS 6414 OR AMS 6415	26-32 HRC PER MIL-H-6875	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS 2411 ON ALL SURFACES
FM	CRES A286 PER AMS 5737	140 KSI MIN	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS 2411 ON ALL SURFACES

1997 SEP

18

∢ NO REVISI(

SL7610

SHEET 2 OF 3

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI 1/14.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID ILM LUBRICANT. 125 [32] ALL SURFACES
 TOLERANCES
 ALL SURFACES

 .XX
 .XXX
 ANGLES
 [X.X.]

 ±.03
 ±.010
 ±2°
 ±[0.8]
 ±[0.25]
 3 ±.010 ±2° ±[0.8] ± DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11 LOCKNUT -METALLIC, SELF LOCKING

SHUR-LOK

PREVAILING TORQUE

TABLE	ABLE III TORQUE PERFORMANCE											
SIZE	MANDREL	МАХ	MIN		MAX INSTALLATION AND MIN BREAKAWAY TORQUES TO BE MEASURED ON MANDRELS AS DEFINED BELOW							
CODE	THREADS -16UNJ-3A PER	INSTL TORQUE IN-LB	FIFTEENTH CYCLE BREAKAWAY			MAX INSTALLATION EST MANDREL	DIME		S FOR MIN BREAKAWAY JE TEST MANDREL			
	MIL-S-8879	[N.m]	TORQUE IN-LB [N.m]	MAJOR DIA +.0000 0005 [+0.000] [-0.013]	PITCH DIA +.0000 0005 [+0.000] [-0.013]	MINOR DIA	MAJOR DIA +.0005 0000 [+0.013] [-0.000]	PITCH DIA +.0005 0000 [+0.013] [-0.000]	MINOR · DIA			
8	.5000	450 [50.8]	50 [5.6]	.5000 [12.700]	.4594 [11.669]	.42054278 [10.681] - [10.866]	.4906 [12.461]	.4559 [11.580]	.42054278 [10.681] - [10.866]			
14	.8750	530 [59.9]	64 [7.2]	.8750 [22.225]	.8344 [21.194]	.79548028 [20.203] - [20.391]	.8656 [21.986]	.8308 [21.285]	.79548028 [20.203] - [20.391]			
16	1.0000	560 [63.3]	70 [7.9]	1.0000 [25.400]	.9594 [24.369]	.9203 — .9278 [23.376] — [23.566]	.9906 [25.161]	.9557 [24.275]	.9203 — .9278 [23.376] — [23.566]			
18	1.1250	585 [66.1]	75 [8.5]	1.1250 [28.575]	1.0844 [27.544]	1.0452 - 1.0528 [26.548] - [26.741]	1.1156 [28.336]	1.0807 [27.450]	1.0452 - 1.0528 [26.548] - [26.741]			
20	1.2500	615 [69.5]	80 [8.5]	1.2500 [31.750]	1.2094 [30.719]	1.1702 — 1.1778 [29.723] — [29.916]	1.2406 [31.511]	1.2056 [30.622]	1.1702 — 1.1778 [29.723] — [29.916]			
22	1.3750	640 [72.3]	85 [9.6]	1.3750 [34.925]	1.3344 [33.894]	1.2951 - 1.3028 [32.896] - [33.091]	1.3656 [34.686]	1.3306 [33.797]	1.2951 - 1.3028 [32.896] - [33.091]			
24	1.5000	690 [78.0]	90 [10.2]	1.5000 [38.100]	1.4594 [37.069]	1.4201 - 1.4278 [36.071] - [36.266]	1.4906 [37.861]	1.4555 [36.970]	1.4201 - 1.4278 [36.071] - [36.266]			
25	1.5625	715 [80.8]	93 [10.5]	1.5625 [39.688]	1.5219 [38.656]	1.4826 — 1.4903 [37.658] — [37.854]	1.5531 [39.449]	1.5180 [38.557]	1.4826 — 1.4903 [37.658] — [37.854]			
26	1.6250	740 [83.6]	95 [10.7]	1.6250 [41.275]	1.5844 [40.244]	1.5451 - 1.5528 [39.246] - [39.441]	1.6156 [41.036]	1.5805 [40.145]	1.5451 - 1.5528 [39.246] - [39.441]			
28	1.7500	790 [89.3]	100 [11.3]	1.7500 [44.450]	1.7094 [43.419]	1.6700 - 1.6778 [42.418] - [42.616]	1.7406 [44.211]	1.7054 [43.317]	1.6700 — 1.6778 [42.418] — [42.616]			
32	2.0000	885 [100.0]	110 [12.4]	2.0000 [50.800]	1.9594 [49.769]	1.9200 - 1.9278 [48.768] - [48.966]	1.9906 [50.561]	1.955 4 [49.667]	1.9200 — 1.9278 [48.768] — [48.966]			
36	2.2500	980 [110.7]	120 [13.6]	2.2500 [57.150]	2.2094 [56.119]	2.1700 - 2.1778 [55.118] - [55.316]	2.2406 [56.911]	2.2053 [56.015]	2.1700 - 2.1778 [55.118] - [55.316]			
40	2.5000	1075 [121.5]	1 3 5 [15.3]	2.5000 [63.500]	2.4594 [62.469]	2.4199 - 2.4278 [61.465] - [61.666]	2.4906 [63.261]	2.4553 [62.365]	2.4199 - 2.4278 [61.465] - [61.666]			
44	2.7500	1175 [132.8]	145 [16.4]	2.7500 [69.850]	2.7094 [68.819]	2.6699 - 2.6778 [67.815] - [68.016]	2.7406 [69.611]	2.7053 [68.720]	2.6699 - 2.6778 [67.815] - [68.016]			
48	3.0000	1300 [146.9]	155 [17.5]	3.0000 [76.200]	2.9594 [75.169]	2.9198 - 2.9278 [74.163] - [74.366]	2.9906 [75.961]	2.9552 [75.062]	2.9198 - 2.9278 [74.163] - [74.366]			

TABLE III TOROLE PERFORMANCE

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI 1/1.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3,2] TOLERANCES

DIMENSIONS IN [] ARE MILLIMETERS

ANGLES [X.X.] [X.X.X] ±2° ±[0.8] ±[0.25]

TOLERANCES .XX .XXX ±.03 ±.010 SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000 REVISION

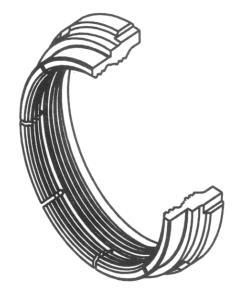
METRIC SIZES AVAILABLE ON REQUEST

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL 7610

3

SHUR-LOK


LOCKNUT – METALLIC, SELF LOCKING

SHUR-LOK

SHEET **3** OF

37

Locknut - Prevailing Torque

SEGMENTED LOCK

FEATURES AND BENEFITS

- One piece design.
- Various wrenching options:
 Slots
 Holes
 Hexagon
- High temperature capability (limited by material selected).
- Locking feature adaptable to various nut designs.
- 50 cycle reusability capable with proper plating and use of lubricants.
- Locking feature less sensitive to high seating torque.
- Comparatively higher axial load capability.

NOTATION

- May be affected by extreme RPM.
- Should not be used without a secondary lubricant.

THREAD SIZE

• 1.250 inch and larger.

APPENDIX B INTERNATIONAL SPECIFICATIONS FOR STEELS

USA	FRANCE	EUR	OPE	GERMANY	GREAT	COMMERCIAL
		AECMA	EN	-	BRITAIN	SPECIFICATION
STAINLESS STE	EELS					
303	ZI0CNF18.09			1.4305		
304	Z6CN18.09			1.4301		
(AISI 431) MIL-S-18732	Z15CN17-03 AIR9160	FE-PM 42	2136	1.4044	5580	A.P.X.
	Z8CND17.04 AIR9160					A.P.X. 4
15-5 PH AMS 5659		FE-PM 64		1.4546		
17-4 PH AMS 5643	Z6CNU17-0 4 AIR9160	FE-PM 61		1.4548		X17U4
17-7 PH MIL-S-25043						
13-8 MO AMS 5629				1.4534		
		FE-PM 66	prEN 2506		28 145	
A 286 AMS 5737 (Bars), AMS 5525(Tubes)	E-Z6NCT25 AIR9165	FE-PA 92 HT	prEN 2303 prEN 2304	1.4944 (Bars)	BSHR51 DTD 5076	
INCONEL 718 AMS 5662	NC19FeNb AIR9165	NI-P 100 HT	prEN 2404 prEN 2405	2.4668		
STRUCTURAL S	STEELS					
	30NCD16 AIR9160					
	E30NCD16 AIR9160					
(SAE 4135)	35CD4 AIR 9160	FE-PL 45		1.7220	708H37 ?	
	35NCD16 AIR9160					
	E35NCD16 AIR9160					
SAE 4140 MIL-S-5626	40CD4 AIR9160					
SAE4130 MIL-S-6758 (Bars) MLS-1872 9(Tubes)	25CD4S AIR9160	FE-PL 43S	2206	1.7214	S-142(Bars) S-534 (Tubes)	
SAE 4340 MIL-S-8844 AMS 6414	(40NCD7) AIR9160			1.6944	817M40? 3S99 ?	
MACHINING ST	TEELS	1				
				1.0737		9SMnPb36
				1.0726		35820